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Executive Summary 
 
The objective of T4.5 is to develop and evaluate digital twins models pertaining to the electrical and 
thermal flexibility available in residential energy communities. With these digital twins more optimal 
flexibility services can be developed in WP5. 
 
This deliverable presents the first version of digital twin models for different thermal assets: 

• A data-driven modeling approach using 2 variants of physics informed neural networks for 
the task of control-oriented thermal modeling of buildings. 

• A hybrid digital twin model for domestic hot water tanks using also a combined approach of 
a physical model of the dynamics of the temperature of the tank and a data-driven model. 

• A neural networks based approach to model and forecast the behavior and performance of 
thermal assets (heating system, building and occupants) for diverse household heating 
scenarios. 

 
The used machine learning (ML) techniques for modelling these assets are described as well as initial 
training and validation results.  
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1. Introduction 
 
To realize efficient demand response algorithms to valorize the flexibility of flexible loads, accurate 
models are needed of (groups of) these controllable loads. In this deliverable we present several 
digital twin models for flexible loads in residential energy communities, to be used in WP5 to deliver 
flexibility services on community and system level. 
 
These digital twins have in common that they use data driven techniques for generating the models, 
often in combination with physics-based models (hybrid or grey-box approach). This results in 
generalizable and interpretable models that can be trained with relatively moderate sized datasets. 
 

1.1. Purpose 
 
This deliverable presents the first version of the developed digital twin models. It describes in detail 
the used machine learning (ML) techniques for modelling flexible thermal assets (space heating via 
district heating system, electric domestic hot water boiler, gas-based boiler for space heating and 
domestic hot water) and initial training and validation results. In the second version of this 
deliverable (to be released in M30) further optimized models will be presented, trained with larger 
datasets, a.o. from the BRIGHT pilots.  
 

1.2. Relation to Other Activities 
 

 
Figure 1. Relation of T4.5 to other BRIGHT activities 

 
This deliverable is the output of Task 4.5 of work package 4 (Figure 1). It uses the outputs from WP2 
and WP3  on requirements, use cases, and drivers and barriers for consumer engagement as input 
for the development of the digital twins. These models will be then be used in WP5 to realize 
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flexibility-based services on community and system level. The models in combination with these 
demand response services will be tested and validated in the BRIGHT pilots as part of WP7. 
 

1.3. Structure of the Document 
 
This deliverable is organized as follows: 

• Section 2 presents currently developed digital twin models for thermal loads in energy 
communities. The used (hybrid) ML techniques to develop these models are discussed in detail. 

• Section 3 presents the first results on the training and validation of these models and 
information on which datasets and pilot data will be used for the further optimization of the 
digital twins in the remainder of the project. 

• Section 4 presents the conclusions. 
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2. Digital Twin Models for Energy Communities 
 

2.1 Building Thermal Model 
 

2.1.1 Introduction 
 
Buildings account for 40% of the total primary energy consumption worldwide. Therefore improving 
their energy efficiency and shifting to the use of renewable energy sources is very important. To 
realize this energy efficiency improvements and provide the necessary flexibility to cope with the 
intermittency of solar and wind energy sources, smart control algorithms for the buildings' energy 
consumption will be crucial in the energy transition process.  
 
Significant research has been carried out in the context of control algorithms for energy 
management in buildings, ranging from simple Rule-based Controllers to advanced controllers like 
Model Predictive Control (MPC) and Reinforcement Learning (RL) [1] . In MPC, a physical model of 
the system is used to anticipate the future behavior of the system and optimize its performance [2] 
. This enables MPC-based controllers to be sample efficient and produce interpretable control 
decisions. However, the accuracy of MPC is closely related to the fidelity of the model, which is often 
difficult to obtain for real-world scenarios [3] .  
 
Contrary to this, data-driven controllers like RL, work directly with past interactions between the 
system, without the need for explicit physics knowledge. Although these RL-based controllers have 
shown promising results, they present a black-box solution that requires large amounts of training 
data. Additionally, in previous work such as [4] , an RL controller was trained using a physics model-
based simulator to ensure that the training data obtained was sufficiently diverse and to avoid 
taking harmful exploration actions. 
 
This makes obtaining accurate building models a crucial requirement for developing better control 
algorithms. A variety of modeling techniques have been studied previously and are broadly classified 
into physics models (white box, grey box) and data-driven models (black box) [5] . The physics 
models involve solving a system of partial differential equations based on the underlying physical 
laws, commonly achieved using numeric solvers such as EnergyPlus, Modelica, as presented in, e.g., 
[6] [7] . The use of such models however has been limited in the control domain, primarily due to 
the high computational cost associated with solving the underlying system of partial differential 
equations [6] . Alternatively, a lumped parameter model using resistive and capacitive networks is 
used for control-oriented modeling. With this framework, different thermal components in a 
building are modeled using a RC network and simplified to obtain a lower order model that is easier 
to solve. However, even with these approximations, the models obtained are highly specific and 
require significant modeling effort as demonstrated in [8] .  
 
Data-driven models circumvent these modeling challenges by relying completely on obtained data. 
Previously, techniques such as ARIMA, Genetic Algorithms, Neural Networks, etc., have been 
studied and have shown good modeling capabilities [5] [9] . Yet, as discussed in [5] , these 
techniques have their own challenges in the form of huge training data requirement and lack of 
interpretability.  
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To get the best of both these worlds, in our research we incorporate self-learning, physics guided 
models with model-based reinforcement learning algorithms to develop interpretable control 
agents in a data-driven manner. We work with Physics Informed Neural Network architectures to 
learn physically relevant control-oriented models of real-world systems. This is achieved by explicitly 
providing information related to the underlying physics of the system to a deep neural network 
during the training procedure. 
 
2.1.2 Related Work 
 

Building Control and Modeling  
 
Extensive research has been carried out previously in this domain, with work such as [1] [10]  
presenting exhaustive reviews of different control algorithms. MPC has emerged as an established 
control technique with works such as [11] [12] [13] presenting case studies for practical 
implementations in real-world buildings. These works show that MPC-based control strategies can 
lead to cost savings of about 20% compared to the rule-based control algorithms. An MPC strategy 
involves a physical model of the system and a set of constraints to formulate a receding horizon 
optimization problem that is solved at every time step to obtain optimum control actions [2] . 
Authors in [12] [13] utilize a grey-box RC model for the buildings. This leads to a bi-linear building 
model and results in a non-linear optimization problem that can still be solved with reasonable 
accuracy using a sequence of linear programs [13] . Solving this optimization problem is 
computationally expensive and can limit the practical applicability of MPC controllers. Besides this, 
MPC controllers are expensive to obtain as indicated in [13] , whose authors conducted a cost-
benefit analysis of using MPC-based control strategies in real-world buildings. They concluded that, 
while MPCs can lead to a decrease in operating costs, the investment costs are much higher, 
primarily due to higher costs associated with the modeling of buildings, thus prohibiting widespread 
commercial application. Further, these building models are seldom scalable and need to be 
developed for individual buildings. E.g., in [8] , authors discuss the model identification process for 
a real-world building and present a procedure for estimating building parameters. This procedure 
leads to models with accurate multi-step temperature predictions (0.3°C prediction error). 
However, this identification process involves solving a quadratic program to obtain good initial 
estimates of the building parameters, followed by solving a multi-step prediction optimization 
problem to obtain the final model. This highlights the high computational requirements for 
obtaining a good building model and the lack of scalability. Additionally, the modeling approaches 
presented above approximate the non-linear thermal dynamics of the building using a first-order 
Euler discretization. This leads to approximate models which can be susceptible to errors and lead 
to biased control actions, as discussed in [6] [14] .  
 
Data-driven control techniques circumvent aforementioned shortcomings of MPC by completely 
relying on collected data as presented in [15] . Owing to the recent success of works such as [16] , 
Reinforcement learning-based controllers are gaining importance in developing controllers for 
buildings [17] . RL-based controllers are self-learning controllers that use data collected from past 
interactions between the system and the controller to learn the dynamics of the system and achieve 
a predefined objective [18] . Works such as [4] [19] have studied RL-based controllers in the context 
of building control and show that such RL controllers can lead to 5 − 12% energy savings compared 
to rule-based controllers. Additionally, [20] compares the performance of MPC and RL controllers 
to show that RL controllers are able to outperform a linear MPC-based controller for two different 
test scenarios. Though these works indicate promising results for RL-based controllers, they also 
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highlight existing challenges in real-world deployment of RL. These include the large training data 
requirement, lack of interpretability, need for safe explorations, etc. [21] . E.g., in [19] , the authors 
use one year of data for training the RL controller using random explorations. Similarly, in [4] , the 
authors use 2 months of temperature data for obtaining a training data size equivalent to 3000 
simulated trajectories. This data intensive nature and need for significant exploration represents a 
common challenge faced by RL-based control strategies. Hybrid control approaches have been 
studied to mitigate some of these problems by combining domain knowledge with these RL 
controllers [14] [22] . E.g., in [22] , the authors present a hybrid control strategy by merging model-
free and model-based control strategies. They propose an aggregate-and-dispatch control 
framework for a cluster of water heaters in which an MPC controller calculates energy set-points 
for the cluster and the dispatch is carried out based on a fitted Q-iteration RL strategy.  
 
Our approach is different: instead of using a model of the system directly, we focus on learning this 
model using the available data and then using it in a model-based RL approach. While different 
techniques for this control-oriented modeling problem have been studied previously, these 
techniques were focused on creating convex, linear (or bi-linear), time invariant models compatible 
with MPC formulation and available optimization solvers [23] [24] . In contrast, our objective is to 
learn a low dimensional, latent space dynamics model of the system to use in RL, where these latent 
representations can be used to learn optimum control policies as demonstrated in [25] [26] . 
Concretely, we use Physics Informed Neural Network architectures [27] .  

 

Physics Informed Neural Network Architectures  
 
As introduced in [27] , Physics informed neural networks represent a novel class of neural network 
architectures where prior knowledge about the system is encoded explicitly in the architecture. This 
work is similar to [28] , where inductive biases based on the underlying physics laws are coded 
directly into the network. Several works have built upon this idea and have shown promising results 
in obtaining approximate solutions for difficult physics problems such as two body mechanics [29]  
and heat transfer [30] . In [27] [30] , the encoded physics knowledge is strictly enforced on the 
predictions of the neural network and assumes the availability of complete physics. Differing slightly 
from this approach, in [29] , the authors enforce partially known physics and learn remaining physics 
parameters using the available data. These approaches show that trained models are better at 
extrapolating and require fewer training samples.  
 
Consistent with these works, we use physics informed neural networks for modeling the thermal 
behavior of a building. However, instead of strictly enforcing prior knowledge, we guide the network 
to maximally adhere to the underlying physics. Differing from work presented in [31] , we encode 
the physics directly by using neural network outputs to calculate additional physics-based losses. 
Additionally, we propose to extract low-dimensional latent representations which correspond to 
the hidden states of the system and use prior physics knowledge to guide them towards a physically 
interpretable space. This ensures that the obtained latent representations are disentangled, as 
opposed to the unsupervised learning cases discussed in [32] [33] . Once trained, these physics 
informed neural network models can be used with model-based RL algorithms such as MuZero [25]  
and Dreamer [26] to obtain optimum control actions for building control. 
 

2.1.3 Mathematical Model  
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In this section we will formulate the Physics-informed Neural Networks for modeling the thermal 
behavior of a household.  
 

Problem Formulation  
 

A Markov Decision Process (MDP) is a commonly used framework to model sequential decision-
making problems [18] . An MDP consists of 4 main components: state space (𝑋), action space (𝑈), 
state transition function (𝑓) and reward function (𝜌). In a fully observable setting, the transition 
function 𝑓: 𝑋 × 𝑈 × 𝑊 → 𝑋 represents the true mapping at time step 𝑖, between the current state 
(𝑥𝑖), the current action (𝑢𝑖), an exogenous parameter (𝑤𝑖) and the next state (𝑥𝑖+1) of the system 
and is given as:  
 

𝑥𝑖+1 = 𝑓(𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖)          (1) 
 

Here, 𝑤𝑖 represents the stochasticity in the system and is assumed as an independent random 
variable. The transition function (𝑓) represents the true dynamics of the system and to obtain a 
control-oriented model, it is necessary to approximate this transition function. For data-driven 
methods, this reduces the problem into a supervised learning problem with the objective of 
estimating the transition function using a labeled set of state transitions  
𝐹 = {(𝑥1, 𝑢1, 𝑤1, 𝑥2), … , (𝑥𝑁, 𝑢𝑁, 𝑤𝑁, 𝑥𝑁+1)}.  

E.g., a neural network with parameters 𝜃 can be trained to solve the following optimization 
problem:  

min
𝜃

1

𝑁 
∑(𝑥𝑖+1 − 𝑓(𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖))

2

𝑁

𝑖=1

          (2) 

With this conventional approach, the neural network learns to estimate the transition function by 
fully relying on the training dataset, without explicitly learning the underlying physical relationships. 
It should be noted that Eq. (2) represents the scenario for a fully observable system, where complete 
state information is known and can be used to obtain predictions for the next states. However, a 
real-world system, such as a thermal model for a building, is generally partially observable where 
some state parameters cannot be measured or obtained directly. In such cases, using Eq. (2) directly 
is not useful as the observed states lack complete information. To mitigate this, [18] presents 
different approaches, one of which involves engineering new high-dimensional features based on 
the observed states. E.g., in case of a thermal model for a building, the observed state can include 
measurements of room temperature or actual power consumption, whereas a hidden state 
parameter can be the temperature of building thermal mass (e.g., walls, furniture, etc.) which is 
difficult to measure or estimate accurately. Accordingly, to compensate for this missing state 
parameter, a sequence of past room temperature measurements can be used instead of a single 
room temperature measurement, and this corresponds to an engineered feature for mitigating the 
partial observability of this system.  

For such partially observable MDPs, the state space (𝑋) consists of an observable component (𝑋𝑜𝑏𝑠) 

and a feature engineered component (𝑋𝑓) such that 𝑋 = 𝑋𝑜𝑏𝑠 × 𝑋𝑓. With this high dimensional 

state representation, a neural network can be trained to estimate the next observable state (𝑥𝑘+1
𝑜𝑏𝑠 ) 
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given state, action, and other exogenous inputs, thus modifying the optimization problem in Eq. (2) 
as: 
 

�̂�𝑖+1
𝑜𝑏𝑠 = 𝑓𝜃(𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖), 

min
𝜃

1

𝑁 
∑(𝑥𝑖+1

𝑜𝑏𝑠 − 𝑓(𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖))
2

𝑁

𝑖=1

          (3)   

 

Aside from this data-driven approach, for problems where the physics of the system are known a 
priori, the system dynamics can be approximated using a system of ordinary or partial differential 

equations that relate the observable states (𝑥𝑖
𝑜𝑏𝑠), actions (𝑢𝑖), other exogenous factors (𝑤𝑖), hidden 

state parameters (𝑧𝑖) and system parameters (Ω). This is represented using a generic differential 
operator (𝐷Ω) as:  
  

𝐷Ω(𝑥𝑖 , 𝑢𝑖 , 𝑧𝑖 , 𝑧𝑖+1, 𝑤𝑖) = 0          (4) 

In the following section, we present the physics informed neural network architectures, which 
combine Eq. (3)–(4) to obtain control-oriented models for systems where the underlying physics are 
known a priori.  

Physics Informed Neural Network Architectures  

Consistent with previous works such as [27] [29] , we explicitly encode the underlying physics of the 
system in a standard neural network architecture and then train it on the data collected. Assuming 

a partially observable setting, the network is trained to predict the next observable state (𝑥𝑖+1
𝑜𝑏𝑠) and 

a latent representation (𝑧𝑖) using a high dimensional state input (𝑥𝑖), action (𝑢𝑖) and exogenous 
information (𝑤𝑖). This is done by setting up a constrained optimization problem based on Eq. (3) as:  

min
𝜃,Ω

1

𝑁
∑(𝑥𝑖+1

𝑜𝑏𝑠 − �̂�𝑖+1
𝑜𝑏𝑠)2          (5)

𝑁

𝑖=1

 

𝑠. 𝑡.     𝐷Ω(𝑥𝑖, 𝑢𝑖 , �̂�𝑖 , �̂�𝑖+1, 𝑤𝑖) = 0, 

∀ (𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖 , 𝑥𝑖+1
𝑜𝑏𝑠) ∈ 𝐹 

 

To solve this optimization problem, we define a loss function composed of two terms: 𝐿𝑟𝑒𝑔 

represents the mean squared error loss for regression and 𝐿𝑝ℎ𝑦𝑠 represents the physics-based loss 

that makes the network adhere to the underlying physics. This is formulated as:  

𝐿𝑜𝑠𝑠 = 𝐿𝑟𝑒𝑔 +  𝜆 𝐿𝑝ℎ𝑦𝑠 

 

𝐿𝑟𝑒𝑔 =
1

𝑁
∑(𝑥𝑖+1

𝑜𝑏𝑠 − �̂�𝑖+1
𝑜𝑏𝑠)2          (6)

𝑁

𝑖=1
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𝐿𝑝ℎ𝑦𝑠 =
1

𝑁
∑(𝐷Ω(𝑥𝑖, 𝑢𝑖 , �̂�𝑖 , �̂�𝑖+1, 𝑤𝑖))

2

𝑁

𝑖=1

 

 

The influence of the physics-based loss term is regulated using 𝜆.  

 

 
Figure 2. Physics Informed Neural Network architectures. 
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Based on this formulation, we propose two variants of Physics Informed Neural Networks as shown 
in Figure 2. The proposed networks have different architectures but are both trained based on the 
methodology described in Eq. (5)–(6). The top subfigure presents an architecture comprising two 
modules, an Encoder and a Dynamics module. The encoder module is parameterized by 𝜃𝐿 and the 
dynamics module is parameterized by 𝜃𝑑. The encoder module creates a bottleneck and encodes 

the high dimensional, feature engineered component of state inputs (𝑥𝑖
𝑓) into a low dimensional 

latent representation (�̂�𝑖). This latent representation along with observable state information (𝑥𝑖
𝑜𝑏𝑠), 

action (𝑢𝑖) and other exogenous information (𝑤𝑖) are then used by the dynamics module of the 

network to predict the next observable state (𝑥𝑖
𝑜𝑏𝑠) of the system. Thus, a forward pass of this 

network can be expressed as:  
 

�̂�𝑖 = 𝑔𝜃𝐿
(𝑥𝑖

𝑓),           

 

�̂�𝑖+1
𝑜𝑏𝑠 = ℎ𝜃𝑑

(�̂�𝑖 , 𝑥𝑖
𝑜𝑏𝑠, 𝑢𝑖 , 𝑤𝑖)         (7) 

 

With this architecture, the prediction for next observable state depends on, among other 
parameters, the prediction of the latent representation (�̂�𝑖). This ensures that the encoded 
representation obtained from this network contains information regarding the dynamics of the 
system and can be leveraged in model based RL algorithms such as [25] [26] .  

Differing slightly from this approach, the bottom subfigure presents a conventional fully connected 
neural network architecture where physics knowledge is incorporated based on Eq. (5)–(6). The 

inputs of this architecture comprise of the full state representation (𝑥𝑖 = (𝑥𝑖
𝑓, 𝑥𝑖

𝑜𝑏𝑠)), action and 

exogenous information. With these inputs, the network predicts the next observable state and a 
latent representation simultaneously. Thus, there is explicit parameter sharing between these 
predictions and these shared parameters are represented by 𝜃. The output layer uses an identity 

activation function and hence the outputs (�̂�𝑖+1
𝑜𝑏𝑠 and �̂�𝑖) are linear combinations of output of the last 

hidden layer of the network (𝑠𝜃). Thus, a forward pass of this network can be formulated as:  

�̂�𝑖 = 𝑔1𝑠𝜃(𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖) + 𝑔2,           

�̂�𝑖+1
𝑜𝑏𝑠 = ℎ1𝑠𝜃(𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖) + ℎ2         (8) 

where 𝑔1, 𝑔2, ℎ1 and ℎ2 are matrices of appropriate dimensions. With this parameter sharing, the 
obtained latent representation does not contribute to obtaining the predictions for the next 
observable state. Consequently, this latent representation may not contain sufficient information 
about the dynamics of the system. However, due to the physics, the latent representation is 
physically relevant and represents the hidden parameters of the system. Hence, in this case, the 
physics module acts as a regularization term guiding the network to learn the dynamics of the 
system and some latent representations simultaneously. This can be leveraged by using this 
architecture in deep Q-networks [34] to improve the learning performance of the Q-network and 
extract additional insights in the form of physically relevant latent states.  
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2.2 Domestic Hot Water Model 
 
This section presents a digital twin to obtain control policies for thermostatically controlled loads, 
such as hot water tanks used for domestic hot water usage. Centrica has data available of a portfolio 
of hot water tanks. These tanks should be controlled in such a way that the comfort of the end-users 
is guaranteed at minimal cost. A hybrid digital twin model is presented that is in line with physics 
informed neural networks. The hybrid digital twin model combines a physical model of the dynamics 
of the temperature of the tank with a data-driven model. Therefore, it is in line with the physics-
informed neural network model presented earlier in this deliverable.  
 
The physical, dynamic model of the temperature in the tank looks as follows: 
 

𝑀𝑠𝐶𝑝𝛥𝑇𝑘 = 𝑞𝑘
𝐻𝑃 − 𝑄𝑘

𝑐𝑜𝑛𝑠 − 𝑈𝐴(𝑇𝑘 − 𝑇𝑘
𝐴) 

𝑇𝑘+1 = 𝑇𝑘 + 𝛥𝑇𝑘 
 

Where 𝑞𝑘
𝐻𝑃 the heating power to heat the water in the tank, 𝑇𝑘

𝐴 the ambient temperature of the 
temp, 𝑇𝑘 the temperature of the water in the tank, 𝑀𝑠 the thermal mass of the water in the tank, 
𝐶𝑝 the specific heat constant of the water in the tank, 𝐴 the outer surface area of the tank, 𝑈 the 

thermal transmittance of the outer surface area of the tank and 𝑄𝑘
𝑐𝑜𝑛𝑠 the thermal power consumed 

by domestic hot water usage. This physical equation represents a linear transition function. The last 
two terms in the function are unknown or hard to measure directly. Nevertheless, measurement 

data are available for the water temperature of the tank 𝑇𝑘 and the heating power 𝑞𝑘
𝐻𝑃. Based on 

these data, we can derive the model for the tank temperature. The decision variable in this model 
is the variable 𝑞𝑘

𝐻𝑃, which determines the power of the heater.  
 
We construct a hybrid model that combines the linear physical transition function and a black box 

neural network model 𝑓𝜆(𝐷𝑘,  𝐻𝑘, 𝑑𝑇𝑘
(1)

, 𝑑𝑇𝑘
(2)

, 𝑇𝑘) to model the domestic hot water usage and the 

tank losses: 

𝑇𝑘+1 = 𝛼. 𝑇𝑘 + 𝐶. 𝑞𝑘
𝐻𝑃 − 𝐿𝑘 

𝐿𝑘 = 𝑄𝑘
𝑐𝑜𝑛𝑠 − 𝑈𝐴(𝑇𝑘 − 𝑇𝑘

𝐴) = 𝑓𝜆(𝐷𝑘 ,  𝐻𝑘 , 𝑑𝑇𝑘
(1)

, 𝑑𝑇𝑘
(2)

, 𝑇𝑘) 

 
The black box neural network model modelling the thermal load uses the day of the week (𝐷𝑘), the 

hour of the day (𝐻𝑘), the temperature differences at the previous time instants 𝑑𝑇𝑘
(1)

 and 𝑑𝑇𝑘
(2)

 and 

the tank temperature at the given time instant (𝑇𝑘) as inputs. 𝜆 represent the parameters of the 
multilayer perceptron model. 
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2.3 Thermal Loads & Assets Dynamic Simulator 
 
The Dynamic Simulator tool will enable the automated performance simulation of thermal assets 
for household heating scenarios, by generating the digital twin representation of their core 
components (heating system, building, occupants). The tool’s purpose is to generate synthetic time-
series that reflect the real-world behaviour of the considered set of thermal assets under different 
scenarios and/or constraints. The outcomes of such analysis are particularly useful when comparing 
the performance of the considered set of assets between different configurations, i.e., when trying 
to quantify the potential improvement when replacing for instance the heating system with 
another, or when trying to evaluate the performance of a considered configuration under different 
thermal loads or other circumstances and specialized use cases, e.g., night use and day use. 
  
The tool runs on demand, taking as input historical data collected from: 

• heating system data (boiler water temperature, etc.); 

• energy consumption data as captured from the attached domX heating controller; 

• user heating preferences as captured by the domX smartphone application and the room 
thermostat; 

• indoor and outdoor environmental data (temperature, humidity, etc.) as captured by various 
connected sensors and web services. 

  
Currently a forecasting pipeline has been developed in order to support the modelling of thermal 
assets, like gas consumption, using statistical and machine learning models to simulate linear 
behaviours and deep neural networks to learn non-linear time-dependent behaviour out of energy 
(e.g., boiler gas consumption) and non-energy data (e.g., boiler operating temperature). 
  
After the forecasted time-series are generated, they are stored in a time-series database and are 
accessible for integration with other components through a web API. The output can also be 
integrated with a custom dashboard for visualizing the forecasted values as well as the various 
monitored parameters (e.g., indoor temperature, boiler consumption) across time. 
  
Specifically, a custom web-based graphical user interface has been developed by combining the 
Vue.js1 and Grafana2 frameworks for visualizing the outputs of the thermal load simulation tool. 
Vue.js is an open-source front-end JavaScript framework for building user interfaces and single-page 
applications. Grafana is an open source analytics and interactive visualization web application which 
can be connected to data source and display data analytics using charts, graphs, and alerts. Real-
time data collected from the heating controllers are integrated using the MQTT message broker and 
stored in the Influx time-series DB. Pandas, Statsmodels and TensorFlow are used to handle the data 
and train the forecasting models. The simulation results are stored in the Influx time-series DB and 
MySQL DB, exposed over a REST API while at the same time employing JWT tokens for guaranteeing 
secure data exchange with other services (Figure 3). 

 
 
1 https://vuejs.org/ 
2 https://grafana.com/  
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Figure 3. Thermal Loads & Assets Dynamic Simulator high-level architecture. 

 

2.3.1. Neural networks for consumption forecasting 
  
Initially we have experimented with the development of efficient pipelines for training and 
evaluating time-series forecasting models which in this case are tuned to the prediction of energy 
consumption levels in future time steps. This is an important processing step and will be the core 
functionality which will subsequently allow the creation of digital twin models for every desired 
configuration of thermal assets in future versions. Time-series forecasting makes use of the best 
fitting model essential to predicting the future values based on complex processing of current and 
previous observations. In general, time-series data are usually composed from time dependent 
components which are related to: 

• Trends: describe increasing or decreasing behaviours of the time-series and are frequently 
presented in linear modes; 

• Seasonality: highlight repeating patterns of cycles of behaviour over time;  

• Irregularity/Noise: regard the non-systematic aspect of time series deviating from the 
common model values; 

• Cyclicity: to identify the repetitive changes in the time series and define their placement in 
the cycle.  

  
Statistical analysis and mathematical modelling can be used to analyse and discover whether the 
aforementioned components exist in order to produce models for the classification and forecasting 
on time series problems and can be especially effective in cases where some prior knowledge for 
the system is available, usually in the form of physical or mathematical properties and constraints 
and can be manually incorporated to the modelling pipeline. In addition, these classical methods 
can perform well on a wide range of problems especially when certain assumptions for the data can 
be made beforehand in order to suitably prepare the data and configure the method, e.g., in the 
case of known linear relationships in the data. 
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While the heating systems we are aiming to model are physical systems and therefore abide to the 
laws of physics and to physical constrains, they are of proprietary manufacturing origin and most of 
the system components and operations are unknown. Even though there are some high-level 
elements known for all heating systems and could be incorporated to mathematical or physical 
models, to create grey box models the analysis of data observations would still be required to figure 
out to model the unknown physical properties of the system. Instead, our approach is purely data-
driven and takes advantage of the elevated capacity of deep neural networks to learn the dynamics 
of the system through training with an abundance of data observations. 
  
Specifically, we experimented with a single-layer linear neural network, a 3-layer fully-connected 
(dense) neural network and a 1D convolutional neural network to carry out the forecasting tasks. A 
typical neural network (Figure 4) is composed of layers of neurons which are stacked one after 
another and are connected with weights. Each neuron performs initially a weighted average of its 
inputs, and then filters the output using an activation function which can be a simple linear or non-
linear function. The produced output is further forwarded as input to the neurons of the next layer. 
The connections between neurons carry learnable weights which define which inputs will be mostly 
activated when passed through neurons. In this way, after the network has learnt optimal weights 
for all connections, it can function as a very complex network of simple elements. In order to learn 
optimal weights, the output of the final layer is fed to a loss function which defines the optimization 
goal of the learning process. The actual learning is done in an iterative manner. In the beginning of 
a cycle inputs are first fed through the network (forward pass) and the loss is calculated. Then with 
an algorithm called backpropagation, the networks’ error is used to tune its weights to follow a 
correction course with a process called stochastic gradient descend. The difference between dense 
networks and convolutional networks is that in the first category, the neurons are all connected 
with each other (there exist a weight for every pair of neurons), while convolutional networks are 
based on a shared-weight architecture, where the weights for each layer are stored in convolution 
kernels or filters that slide along input features and provide translation equivariant responses 
known as feature maps. 
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Figure 4. A typical 3-layer dense neural network. The first layer is the input layer, then follow 3 
hidden layers and the final layer is producing a single output value. Layers are fully-connected 

which means that every neuron takes input from all neurons of the previous layer. 

In order to build a neural network, certain design choices have to be considered which are related 
to the number of layers, the depth of each layer (number of neurons), the activation function, the 
loss function and the parameters of the learning algorithm. The learning rate is an important 
parameter of the algorithm for example, which defines the aggressiveness at which the correction 
of weights will be performed. Using a small learning rate will take more time to converge to an 
optimal solution, but with a large learning rate the solution may start deviating and never converge 
to a minimum. Training can also be achieved in multiple ways: online training requires a forward 
and a backward pass for every single observation while minibatch training can calculate the 
cumulative loss of a batch of observations and perform the backward pass once to correct the 
weights.  
  
In all experiments we performed minibatch training, by passing 10000 random samples from the 
training set at once after each iteration. After a certain number of iterations, the network has seen 
every data observation in the training set at least once and is considered to have finished an epoch 
of training. We let the training run for 500 epochs as a maximum limit with early stopping activated, 
which is a technique that monitors the loss value and stops the training process if the loss didn’t 
improve by at least 0.0001 for 10 straight epochs. We also globally set the learning rate to be 0.01 
which empirically is known to perform well in a variety of learning tasks. For the single-layer network 
we setup a single layer with a single neuron which calculates a linear operation of the inputs. A 
neural network with a linear activation function is simply a linear regression model. For the 3-layer 
dense network we used 3 layers with a depth of 32 in each one and Rectified Linear Units (ReLU) as 
activation function in the neurons. ReLU takes the following form: 
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ReLU has a non-linear behaviour which allows the modelling of more complex associations between 
data, and is also more efficient in training. For the loss function we choose in all experiments to 
minimize the Mean Squared Error between the network output and the target values. 
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3. Training and Validation of Digital Twin Models 
 

3.1 Building Thermal Model 

In this section, we apply the general methodology introduced in Section 2.1 for the case of thermal 
modeling of a building. We will detail the used thermal building model, the type of experiments and 
the used configurations of physics informed neural network architectures. We compare the 
prediction accuracy of both architectures against a similar conventional neural network and assess 
whether the proposed architectures can be used for control applications.  

3.1.1 Thermal Model of a Building 
 

 
Figure 5. The resistance-capacitance network thermal model of a building. 

 
A simplified scenario is considered with a single room (or zone) that is heated using a heat source. 
The inside room temperature and power consumed by the heating source are monitored over fixed 
time intervals (∆𝑡) with a resolution of 30 minutes. The objective of the model is to predict the room 
temperature and the power consumed for subsequent time steps. To model this scenario, we adopt 
a grey box modeling approach using the 2R2C network model [35] , illustrated in Figure 5 and with 
the following state-space formulation:  

[
�̇�𝑟

�̇�𝑚

] =

[
 
 
 −(

1

𝐶𝑟𝑅𝑟𝑎
+

1

𝐶𝑟𝑅𝑟𝑚
)

1

𝐶𝑟𝑅𝑟𝑚

1

𝐶𝑚𝑅𝑟𝑚
−

1

𝐶𝑚𝑅𝑟𝑚]
 
 
 

∙ [
𝑇𝑟

𝑇𝑚
] + [

𝑏
0
] ∙ 𝑢 +

[
 
 
 
 

𝛼

𝐶𝑟

𝛽

𝐶𝑟

1

𝐶𝑟𝑅𝑟𝑎

1 − 𝛼

𝐶𝑚

1 − 𝛽

𝐶𝑚
0

]
 
 
 
 

∙ [

𝐺
𝐼𝑔
𝑇𝑎

]     (9) 

Here, 𝑇𝑟, 𝑇𝑚 and 𝑇𝑎 are the room temperature, temperature of building’s thermal mass and outside 
temperature respectively, 𝐺, 𝐼𝑔 represent solar irradiance and internal heat gains, and 𝑅𝑖 , 𝐶𝑗 
correspond to heat transfer parameters of the building. The room temperature 𝑇𝑟 is an observable 
state of the system that can be measured. Contrarily, 𝑇𝑚 is a hidden state of the system which 
cannot be measured directly and, in most cases, is extremely difficult to estimate. This modeling 
approach hence leads to a partially observable model of the building. Additionally, a low-level back-
up controller is assumed which ensures that the room temperature remains within a predefined set 
of limits based on the comfort of the user. The action of this back-up controller affects the actual 

power consumption (𝑢𝑖
𝑝ℎ𝑦𝑠) which is modeled as: 
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𝑢𝑖
𝑝ℎ𝑦𝑠 = {

0   ∶ 𝑇𝑟,𝑖 > 𝑇𝑟
𝑚𝑎𝑥

𝑢𝑖    ∶ 𝑇𝑟
𝑚𝑖𝑛 ≤ 𝑇𝑟,𝑖 ≤ 𝑇𝑟

𝑚𝑎𝑥

𝑢𝑚𝑎𝑥    ∶ 𝑇𝑟,𝑖 < 𝑇𝑟
𝑚𝑖𝑛

}          (10) 

This backup controller ensures the comfort of the user and its actions leads to a difference between 

the power demanded (𝑢𝑖) and the actual power consumed (𝑢𝑖
𝑝ℎ𝑦𝑠). To solve Eq. (9)–(10), an 

accurate estimate of hidden state (𝑇𝑚) is required along with accurate measurements related to 
exogenous quantities like 𝐺 and 𝐼𝑔. Since in practice precise estimates are difficult to obtain, we will 

eventually get only an approximate solution. Further, the building parameters like conductivity of 
different walls change over time due to deterioration and lead to model bias. Hence modeling a 
household directly using Eq. (9)–(10) is a difficult and expensive process and can lead to biased and 
sub-optimal control policies.  
 

3.1.2 Physics Informed Neural Network Configurations 
 

Symbol Physical Meaning 

𝒙𝒊
𝒇
 {(𝑇𝑟,𝑖−𝑘 , … , 𝑇𝑟,𝑖−1), (𝑢𝑖−𝑘−1

𝑝ℎ𝑦𝑠 , … , 𝑢𝑖−2
𝑝ℎ𝑦𝑠)} 

𝒙𝒊
𝒐𝒃𝒔 (𝑇𝑟,𝑖 , 𝑢𝑖−1

𝑝ℎ𝑦𝑠
) 

𝒘𝒊 (𝑡𝑖 , 𝑇𝑎,𝑖) 

𝒛𝒊 𝑇𝑚,𝑖 

𝒖𝒊 Controller Power 

Table 2. State and Action Definitions for time step i 

Both architectures shown in Figure 2 were used and prior physics information in the form of Eq. (9) 
was given to these networks. The state-space model defined using Eq. (9) leads to a partially 
observable system. To mitigate this, input in the form of a sequence of past 𝑘 observable states and 

actions (𝑥𝑖
𝑓

) along with observable state, actions, and other exogenous information in the form of 

time of day (𝑡) and outside air temperature is used. With these inputs, the networks predict the 
room temperature, power consumption, and estimate the temperature of building thermal mass 
(𝑇𝑚). The resulting state and action definitions are summarized in Table 2.  

The parameter 𝑘, referred to as ‘depth’, controls the amount of information given to the neural 
network. It is important to note that the observed states for time step 𝑖 consist of the room 
temperature at this time step (𝑇𝑟,𝑖) and the actual power that was consumed during the last time 

step (𝑢𝑖−1
𝑝ℎ𝑦𝑠). Prior physics knowledge is provided to these architectures by directly plugging in Eq. 

(9) in the form of  

[
�̇�𝑟

�̇�𝑚

] = [
−𝑎11 𝑎12

𝑎21 −𝑎22
] ∙ [

𝑇𝑟

𝑇𝑚
] + [

𝑏
0
] ∙ 𝑢 + [

𝑐11 𝑐12 𝑐13

𝑐21 𝑐23 0 ] ∙ [
0
0
𝑇𝑎

]          (11) 

 
The parameters 𝑎𝑖 , 𝑏, 𝑐𝑗 are building specific parameters and initialized based on the building EPC 

values and further tuned during the training phase. This ensures that in the absence of accurate 
values of these parameters, the model can be initialized with approximate values. Moreover, these 
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values can be tuned over time, thus taking into account any natural variations. With this information 
setting, the different components of the loss function defined in Eq. (6) can be formulated as:  

𝐿𝑟𝑒𝑔 =
1

𝑁
∑(𝑇𝑟,𝑖 − �̂�𝑟,𝑖)

2

𝑁

𝑖=1

+
1

𝑁
∑(𝑢𝑖

𝑝ℎ𝑦𝑠 − �̂�𝑖
𝑝ℎ𝑦𝑠)2

𝑁

𝑖=1

 

𝐿𝑝ℎ𝑦𝑠 =
1

𝑁
∑(𝑇𝑚,𝑖

𝑀 − �̂�𝑚,𝑖)
2          (12)

𝑁

𝑖=1

 

The hidden state (𝑇𝑚,𝑖
𝑀 ) represents the physics module output and is computed by first estimating 

�̇�𝑟,𝑖 and then using Eq. (11) to obtain 𝑇𝑚,𝑖
𝑀  as shown in Eq. (13).  

 

�̇�𝑟,𝑖 =
𝑇𝑟,𝑖+1 − 𝑇𝑟,𝑖

∆𝑡
           

𝑇𝑚,𝑖
𝑀 =

1

𝑎12
(�̇�𝑟,𝑖 + 𝑎11�̂�𝑟,𝑖 − 𝑏�̂�𝑖

𝑝ℎ𝑦𝑠
− 𝑐13𝑇𝑎,𝑖)         (13) 

Here, �̂�𝑟,𝑖 is obtained as an output by using input sample 𝑖 − 1 and �̂�𝑖
𝑝ℎ𝑦𝑠. The target value for the 

hidden state is explicitly dependent on the predictions of the room temperature and the power 
consumed. The loss functions defined in Eq. (12) guides the outputs of the networks towards 
physically relevant values.  

3.1.3 Training Data 

We considered two different scenarios for obtaining training data for these architectures: (1) a 
simulated single household environment, and (2) real-world cold storage data. The simulated 
scenario has been specifically designed to assess the capacity of the proposed physics informed 
neural network architectures to estimate the hidden state 𝑇𝑚 of a building. After establishing this, 
later experiments focused on the real-world data scenario and assessed the performance of our 
proposed architectures for different configurations. Both scenarios involved observations related to 
room temperature, actual power consumption, control actions and outside air temperature. The 
frequency of these measurements was set to 1 measurement per 30 minutes, as this is enough for 
a heating/cooling system which has a rather slow reaction time. A training dataset equivalent to 120 
days of such measurements was generated/collected. Similarly, a test dataset was generated 
equivalent to 5 days that were not a part of the training set. Each day corresponds to 48 input 
samples and the test sets for both scenarios used are shown in Figure 6.  
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Figure 6. Test datasets 

Simulated Data 

In this scenario, Eq. (9)–(10) were solved, as discussed in [38]. A discretization step of 1 minute was 
assumed and a control action was taken every 30 minutes. For every minute, a first order 
approximation of Eq. (9) was solved to obtain the room temperature, hidden state, and actual 
power consumption. To further simplify the scenario, we ignored the effects of solar irradiance and 
internal heat gain. The simulation was initialized by setting 𝑇𝑟 = 𝑇𝑚 = 17℃. Further, control action 
𝑢 was chosen randomly and did not follow any active control logic. Figure 6 (top) shows a subset of 
data generated in this scenario.  

Real-World Data 

This scenario involved data obtained from a cold storage. This scenario is more complex than the 
simulated data generated as it involved actions taken by an active control strategy and also included 
solar irradiance, internal heat gains, etc. The influence of these exogenous factors was recorded 
only indirectly, via the room temperature measurements, due to absence of sensors to directly 



BRIGHT D4.5 – Electrical and thermal communities DTs’ models – first version 
 

BRIGHT  26(42) 
 

measure them. Figure 6 (bottom) shows a subset of data corresponding to this scenario. In this cold 
storage case, no back-up controller was used and hence the actual power consumed is identical as 
the control setpoints.  

3.1.4 Parameter Tuning for Physics Informed Neural Network Architectures 
 
Besides different data scenarios, we also analyze the impact of different parameter configurations 
for both architectures. The input given to both architectures involves a sequence of past room 
temperatures and control actions. The length of this sequence, referred to as ‘depth’, determines 
the amount of past information available to the model and is an important parameter in the 
architecture. This information, to a certain level compensates for missing information like solar 
irradiance or internal heat gains, helping the model to better estimate the hidden state of the 
building (𝑇𝑚). Further, the network sizes and hyperparameters (learning rate, type of optimizers) 
were tuned for a base case of setting 𝜆 = 0 for both architectures. This ensured that the network 
size and representative power was not constrained by the physics-based regularization, and we can 
observe supplementary gains in performance after tuning 𝜆.  

Both variants of physics informed neural networks were implemented using the Pytorch Lightning 
package [36] . Table 3 and Table 4 present the hyperparameters chosen for these architectures. 20 
models were trained using the same set of hyperparameters and with different seeds between 1 
to 20. Both architectures were trained using a batch size of 2048 and with 75 epochs.  

Parameter Value 

Optimizer Adam 

Learning Rate 0.001 

Activation Function Tanh 
Batch Size 2048 

Hidden Layers 2 

Neurons per layer 64 

Table 3. Hyperparameters for PhysReg MLP Architecture 

 

Parameter Value 
Optimizer Adam 

Learning Rate 0.001 

Activation Function Tanh 

Batch Size 2048 

Encoder Module (𝜃𝐿) 

Hidden Layers 2 
Neurons per Layer 24 

Dynamics Module (𝜃𝑑) 

Hidden Layers 1 

Neurons per Layer 128 

Table 4. Hyperparameters for PhysNet Architecture 
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The hyperparameter values were obtained by minimizing the mean absolute error in predicted 
temperature as a performance metric. Because of the low training sample regime, training multiple 
models ensures that we obtain a distribution of performance values, thus mitigating the effects of 
possible outliers due to underfitting.  
 

3.1.5 Results and Discussions 

Three different experiments were performed to test our proposed PhysNet and PhysReg MLP 
architectures (Figure 2) and assess their performance as a control-oriented model.  

Architecture Validation 
The aim of our first experiment was to validate the performance of the proposed physics informed 
neural network architectures in determining the quality of the hidden state estimates. For this 
purpose, simulated data was used for training and validation. The validation dataset, shown in 
Figure 5 (top), contains 240 samples for which we computed the Mean Absolute Error (MAE) of 
predicted room temperature (𝑇𝑟) and predicted hidden state (𝑇𝑚). A fixed training size of 120 days 
(5,760 samples) was used along with a fixed depth value of 8. Figure 7 shows the predictions for 
both architectures.  
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Figure 7. Prediction results for the two physics informed neural network architectures for the 
simulated data scenario 

We note that for both cases, the room temperature and action predictions follow the actual values 
closely, indicating a good prediction performance. Additionally, the estimates of 𝑇𝑚 track the actual 
values of hidden states, thus demonstrating the effectiveness of our proposed architectures for the 
given prediction task. Table 5 shows the MAE values for room temperature (𝑇𝑟) and hidden state 
(𝑇𝑚) predictions for this experiment.  

 MLP PhysReg MLP PhysNet 

𝑇𝑟 0.209 ℃ 0.197 ℃ 0.226 ℃ 

𝑇𝑚 1.413 ℃ 0.385 ℃ 0.436 ℃ 

Table 5. Comparison of MAEs for room temperature (𝑇𝑟) and hidden state (𝑇𝑚) for the proposed 
architectures 
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Table 5 presents error values in ℃. A conventional MLP with the same hyperparameters as the 
PhysReg model was used to benchmark the performance of PhysNet and PhysReg MLP 
architectures. For all three networks, the mean errors are less than 0.25℃, indicating a good 
performance. Comparing the architectures, the PhysReg model performs the best with an absolute 
error of 0.197℃. However, there is a significant difference between mean errors for the hidden 
state, where conventional MLPs cannot estimate this state due to lack of target values, thus 
performing poorly in this metric. The physics informed neural network architectures perform 60 − 
70% better than the conventional MLPs with an absolute error of less than 0.5℃. These results 
demonstrate that PhysNet and PhysReg MLP architectures can be used effectively to predict room 
temperature and hidden state and hence are more suitable for control oriented thermal modeling 
of a building. 

 
Figure 8. Prediction results for physics informed neural network architectures for the real-world 

data scenario. 

Following these results, both physics informed neural network architectures were trained on real-
world data obtained from a cold storage unit. Similar to the previous case, a training data size of 
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120 days was used and performance was validated on 5 test days, including a benchmark by a 
conventional neural network. Figure 8 shows the performance of PhysNet and PhysReg MLP 
architectures on the real-world data set.  

We note that both architectures accurately predict the room temperature and power consumption 
values for the 5 test days along with an estimate of the hidden state of the system (𝑇𝑚). The results 
shown in Figure 7, Figure 8 and Table 5 validate the performance of the proposed physics informed 
neural network architectures for the task of modeling the thermal behavior of a building.  

Performance vs. Training Data Size 
 
The second set of experiments analyzed the impact of training data size on the performance of 
physics informed neural network models. The motivation for using physics informed neural 
networks was to leverage prior knowledge to train models faster and more efficiently. To validate 
this, models were trained on real-world training data of varying size, sampled from the main training 
set. Each model was then tested using MAE as the performance metric on the test data set of 240 
samples (5 days) shown in Figure 6 (bottom). Two different test configurations were used, 
depending on the prediction horizon. Our architectures enable one-step ahead prediction. To obtain 
predictions for longer horizons, a recursive strategy was used, where the model output was fed back 
to the model as input to generate multi-step forecasts. This strategy mimics a tree search algorithm 
used in model based RL techniques like [25] . The two test configurations used a prediction horizon 
of 3 hours (6 steps) and 12 hours (24 steps). The performance of physics informed neural networks 
was further compared to a conventional neural network and a persistence forecast model for both 
these configurations. Figure 9 shows the model performance for different training data sizes for the 
real-world data scenario.  

 

Figure 9. Mean room temperature prediction error for varying training data size. The plots 
represent mean error of 20 trained models and the error bars represent ± standard deviation. 
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We note that for a prediction horizon of 12 hours, both PhysNet and PhysReg MLP architectures 
perform better than the conventional MLP. For smaller training data sizes (15-45 days) the 
predictions for physics informed neural network architectures attain an MAE that is at least 15% 
lower than MLP. This difference decreases sharply with increasing training size, where for higher 
training sizes (> 90 days) the performance of all three architectures is similar. Contrary to this, for a 
shorter prediction horizon, the conventional MLP outperforms the PhysNet architecture, and 
performs similarly as the PhysReg MLP architecture. Additionally, in both configurations, all three 
architectures outperform a persistence forecasting model of similar prediction horizon for most 
training data sizes. This shows that introducing prior knowledge to the neural network architecture 
aids the network to learn more efficiently and requires less training data to reach equally good (or 
better) performance.  

 

Performance vs. Prediction Horizon Size 

From Figure 9, we note a difference in performance for different prediction horizons. While it is 
intuitively expected that increasing the prediction horizon will lead to compounding of errors, it is 
of interest to analyze how this performance degradation evolves for each of the two architectures. 
This experiment thus analyzes the performance of physics informed neural networks for varying 
prediction horizons. Because of their relevance for typical control time frames, prediction horizons 
of {0.5, 3, 6, 12, 18, 24} hours were selected, with each hour corresponding to 2 prediction steps. 
To include the impact of training data size, two training configurations of 30 days and 90 days were 
chosen. Like the previous experiment, real-world data was used with 5 test days as shown in Figure 
6 (bottom). MAE of room temperature predictions was chosen as the performance metric and the 
performance was again benchmarked using a conventional MLP and a persistence forecast model 
with prediction horizon of 30 minutes (equaling 1 time step). Figure 10 presents the results obtained 
for this experiment.  

 

Figure 10. Mean room temperature prediction error for varying prediction horizons. The plots 
represent the mean error of 20 trained models and the error bars represent ± standard deviation. 
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We note that for a large training data (120 days), all three architectures perform similarly in terms 
of mean values. However, the error bars indicate that PhysNet MLP architectures produce results 
with a tighter distribution. This indicates a stable training performance. For low training sample 
configurations, the performance of conventional MLP deteriorates rapidly with increase in 
prediction horizon size, with an error of close to 1°C for the case of 24 hours. While there is a 
significant decrease in performance for physics informed neural networks, the error margins remain 

around 0.75°C with a standard deviation of ±0.3◦C. This indicates that with less training data, the 
physics informed neural network models can use prior physics knowledge and lead to trained 
models that are stable and perform better than conventional MLPs. This is an important feature 
that can be leveraged in control applications for evaluating longer trajectories in tree searches.  

These results demonstrate that introducing prior knowledge into a network leads to better 
predictions, makes the training process sample efficient and yields models that can be used for 
developing better control algorithms.  

3.1.6. Next steps 

Future work will involve two key directions: (i) developing Control Algorithms as part of WP5, and 
(ii) improving the PhysNet and PhysReg MLP architectures. In (i) we will use these architectures in 
model based RL algorithms like [25] [26] . The control agent will be capable of learning the model 
of the building and an optimum control policy simultaneously. Moreover, leveraging the learnt 
model, the agent can create a schedule for the next hours, making the decision-making process 
interpretable and allowing human supervisory control. For (ii), we aim to improve the architecture 
by introducing a direct multi-step forecasting capacity rather than the current one-step prediction 
setting. This will allow the architecture to produce one shot forecasts for a pre-defined prediction 
window. Other improvements include assessing the performance benefits of using recurrent neural 
networks in the model architecture and the role of clustering and transfer learning for scalable 
model deployment.  

3.2 Domestic Hot Water Model 
 
The proposed methodologies have been investigated and tested using Centrica’s in-house data from 
hot water tanks. These data sets contain the tank temperature of the hot water tanks and the power 
used to heat the tank over an extended period of time. 
 
The parameters of the hybrid digital twin model 𝜆 = [𝛼, 𝐶, 𝜆] are learnt using the loss function 
consisting of the mean squared error difference between the realizations of the tank temperature 
and the modelled tank temperature, a regularization term to limit the dimensionality of the 
multilayer perceptron and some cost functions to represent constraints keeping the values of the 
physical constants within realistic limits (𝐾𝑢(𝛼): 𝛼 < 1,𝐾𝑙(𝛼): 0.98 < 𝛼,𝐾(𝐶): 𝐶 < 0.1).  
 

𝑎𝑟𝑔𝑚𝑖𝑛𝛼,𝐶,𝜆 𝑙𝑜𝑠𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼,𝐶,𝜆 [(𝑇𝑘 − 𝑓𝜆(𝑥))
2
+ 𝛽. |𝜆|2 + 𝐾𝑢(𝛼) + 𝐾𝑙(𝛼) + 𝐾(𝐶)] 

 
Stochastic gradient descent is used to minimize the loss function, using the Adam solver [4].  
 
Figure 11 shows the loss function evaluations and this for the training data and the test data during 
fitting of the hybrid model. The plot indicates the decreasing trend in the loss function and a 
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converging trend between the training and test loss. The oscillations in the learning curve are 
normal in a non-linear problem, such as the problem at hand. 

 
Figure 11. Evolution of mean squared error loss for training and testing data during fitting 

Figure 12 shows a forecast of the temperature of the tank using the learnt hybrid model for a given 
initial temperature compared with the temperature of the tank according to the data set, which 
shows a reasonable performance. 
 

 
Figure 12. Forecast of the tank temperature for a given initial temperature of the tank 

The model also performs as expected in a control context where the model is applied in a model 
predictive controller. The learnt model is used to forecast the temperature of the tank over a given 

forecast horizon if certain actions 𝑞𝑘
ℎ𝑝 are taken. A hard constraint should avoid that the 

temperature drops below the threshold temperature of the tank: 
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argmin
𝑞𝑘

ℎ𝑝 ∑ 𝐶(𝑞𝑘
ℎ𝑝)

𝑘∈[𝑘,𝑘+𝐻]

 

 

𝑇𝑘+1 = 𝛼. 𝑇𝑘 + 𝐶. 𝑞𝑘
ℎ𝑝 + 𝑓𝜆(𝐷𝑘,  𝐻𝑘 , 𝑑𝑇𝑘

(1)
, 𝑑𝑇𝑘

(2)
, 𝑇𝑘)∀𝑘 ∈ [𝑘, 𝑘 + 𝐻] 

𝑇𝑘 > 𝑇𝑡ℎ𝑟𝑒𝑠 ∀𝑘 
𝑇0 = 𝑇𝑖𝑛𝑖𝑡 

 
Figure 13 shows the control actions resulting from applying the linear model in a model predictive 
control algorithm. The graph shows that the heater is switched on (green dots) at moments when 
prices are low and switched off when prices are high.  

 
Figure 13. Control actions of the heater as a function of the price signal applying the hybrid model 

in a model predictive controller (green = on, red = off) 

 

3.3 Thermal Loads & Assets Dynamic Simulator 
 

3.3.1. Data acquisition and description 
 
DomX has developed a smart monitoring and control system which involves the installation of a 
heating controller that acts as a bridge between the thermostat and the boiler. The domX controller 
collects various data regarding indoor and outdoor metrics, like temperature and humidity as well 
as metrics related to boiler activity, e.g., the water temperature inside the boiler, the temperature 
of the water (inlet) which is entering from the home radiators to the boiler and the boiler 
modulation level (% of max boiler modulation capacity). In addition, the domX controller runs a 
control loop algorithm to control the boiler activation patterns and adapt the actual temperature of 
the water circulated through the installed radiators based on indoor, setpoint and outdoor 
temperatures. This mechanism aims towards improving the boiler efficiency and the perceived user 
comfort whilst reducing the energy consumption and costs. This functionality also integrates user 
preference by exposing a heating balance setting, which defines how aggressively the adaptive 
algorithm will prioritize faster water heating to reach boiler setpoint temperature over the reduced 
consumption mode. 
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These values have been captured for several months. Since the raw data exist in various sampling 
frequencies, some simple pre-processing steps were performed to polish the data, i.e., (a) 
resampling all measurements to 1 second intervals, (b) removing erroneous values using rule-based 
outlier detection (e.g., known extreme temperature values) and (c) handling missing values by linear 
interpolation or filling. To summarize, all the metrics which were considered as variables of the 
heating system are: 

• Boiler modulation level: The percentage of maximum boiler modulation capacity; 

• Boiler temperature: The current temperature of the water inside the boiler; 

• Inlet temperature: The current temperature of the water entering the boiler from the 
radiators; 

• Boiler setpoint: The target water temperature the boiler is instructed to reach; 

• Indoor temperature: The current room temperature inside the house; 

• Indoor setpoint: The target room temperature the heating system must reach; 

• Outdoor temperature: The current temperature outdoors; 

• Water: Binary variable which indicates whether domestic hot water has been requested; 

• Heating balance: User setting of the scale which controls the economy-comfort trade-off. 
Ranges from 0 (most efficient) to 10 (most aggressive); 

• Bypass: Binary variable which indicates whether the adaptive algorithm is active or not. In 
case this is 0, the legacy mode is active which always sets the boiler setpoint to a fixed 
temperature typically within the range of 65-80°C. 

 

  
Figure 14. Example of a typical residential heating system. 

3.3.2. Boiler modulation forecasting experiments 
  
In the first set of experiments the boiler modulation level was selected as the variable to be 
forecasted while others were set as the predictor variables. This setting was chosen as the most 
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direct approach for simulating the heating system and in order to obtain insight about design 
choices in the methodology and how they impact the forecasting of consumed energy. A typical 
household’s heating system is shown in Figure 14. What is influencing the modulation level directly 
are the temperatures related to the boiler and specifically the boiler temperature and the boiler 
setpoint: as long as the setpoint is higher that the current temperature the boiler needs to spend 
energy to heat up the water. Presumably, the outside weather is also a factor for the water 
temperature with a reasonable impact mainly when the system has been inactive for a long time 
and the water is cooling down. The set of indoor temperature and indoor setpoint values define 
whether heating is required through the radiators. One could argue that this requirement for 
heating can be expressed equivalently either by the indoor temperatures or the boiler 
temperatures, regardless for our first attempt we opted to get input from all variables. In future 
versions where we intend to produce forecasts for the indoor setpoint based on user historical data, 
we may assume the boiler temperatures as intrinsic variables which are hidden and attempt to 
associate the consumption with the indoor temperature and the indoor setpoint directly in order to 
emulate the behaviour of the boiler. 
  
The data have been acquired for several domX clients and span from December of 2020 to April of 
2021 for most of the households. We decided to split the data into training, validation and test sets 
accordingly: 

• Training set: 12/2020 – 02/2021 (3 months); 

• Validation set: 01/03/2021 – 15/03/2021 (1/2 month); 

• Test set: 16/03/2021 – 16/04/2021 (1 month). 

  
The training set is the data which we train the models on, the validation data are used during training 
to monitor the validation loss upon which the early stopping function decides when training stops 
and the test data are observations never seen by the models used for the final evaluation.  
  
We decided to run the experiments using three different values for the time-series temporal 
sampling (timedelta, dt), specifically assuming that all time-series values are captured every 10 
seconds, 1 minute or 5 minutes. Those are all possible settings that we may adopt in the future. At 
each time step we assume that every feature in all previous steps are known including the 
modulation and our intention is to build an accurate predictor of the boiler modulation one step 
into the future given current and previous values of all features. Our aim in this initial set of 
experiments is to compare model performance in terms of the root mean squared error (RMSE) 
averaged across all the predicted boiler modulation values of the test set, which we can then use at 
a later stage as the core module of a more complex dynamic simulator. 
  
In order to get some indication about how far into the past is beneficial for each model to look we 
tested using both single-step input (input from the previous time step) and multi-step versions of 
the models which can accept input from multiple previous values of all features. Additionally, to 
check that the models are actually learning something from the training process, we evaluate them 
all against a baseliner which just copies into the future the previous boiler modulation value 
unchanged. The baseline model is essentially a model which predicts no change. 
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Figure 15. Test set RMSE, dt=10 seconds 

 

 
Figure 16. Test set RMSE, dt=60 seconds (1 minute) 
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Figure 17. Test set RMSE, dt=300 seconds (5 minutes) 

Figure 15, Figure 16 and Figure 17 show the test set RMSE for the three different timedelta settings. 
First, we can observe that every trained model performs better than the “no-change” baseline which 
is a sanity check for our methodology that the training process is working as expected. Starting from 
the linear model we can observe in all charts the drop in RMSE compared to the baseline, which is 
more evident in the 5-minute timedelta. This is expected, since the modulation is a series that varies 
rapidly with time and simply copying the last 5-minute value will result in much worse performance 
than copying the previous 10-second value. Another interesting observation can be made about the 
dense models which outperform the linear ones in every setting. This validates that the problem is 
more complex than the capacity of a linear model. Also, regarding multi-step input, it can be seen 
that it is beneficial to add about 5 or 6 steps into the past and any additional information from the 
past is either redundant or, interestingly, may even worsen performance. Finally, it can be 
concluded that there is no real benefit on performance when using a 1D convolutional network, but 
such a network could still be considered as an alternative option as it produces a similar 
performance more efficiently, since they tend to converge faster than dense networks.  
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4. Conclusions 
 
This deliverable presented the first results on digital twin models for groups of flexible devices in 
energy communities. These digital twins will be used in WP5 to implement and validate flexibility 
valorisation techniques and algorithms to deliver flexibility services on community and system 
level.  
 
In particular the following digital twins that are under development were described in detail: 

• A data-driven modeling approach using physics informed neural networks to model the 
temporal evolution of a room temperature, the associated power consumption and 
temperature of the building thermal mass; 

• A hybrid digital twin model for domestic hot water tanks which uses a similar approach. A 
physical model of the dynamics of the temperature of the tank is combined with a data-
driven model; 

• A pure data-driven approach using neural networks to forecast the behavior and 
performance of thermal assets (heating system, building and occupants) for diverse 
household heating scenarios. 

 
In the second version of this deliverable (to be released in M30), an update will be provided on the 
presented digital twin models, with a presentation of further optimized models, trained with (larger 
amounts of) BRIGHT pilot data and data from TNO’s HESI lab, and an evaluation of their impact on 
the development of flexibility services in WP5.    
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