
The BRIGHT project is co-founded by the EU’s Horizon 2020 innovation
programme under grant agreement No 957816

The project Boosting DR through increased communIty-level consumer engaGement by combining Data-driven and blockcHain technology Tools
with social science approaches and multi-value service design (BRIGHT) has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 957816. The sole responsibility for the content of this publication lies with the authors. It does
not necessarily reflect the opinion of the Innovation and Networks Executive Agency (INEA) or the European Commission (EC). INEA or the EC are
not responsible for any use that may be made of the information contained therein.

Boosting DR through increased communIty -level consumer engaGement by combining Data -driven
and blockcHain technology Tools with social science approaches and multi -value service design

Deliverable D4.1 Scalable Privacy Preserving
Data Collection

Authors: Andrej Čampa (COM), Klemen Bregar (COM), Denisa Ziu (ENG), Andrea Iannone (CEL)

BRIGHT D4.1 – Data collection

BRIGHT 2(30)

Imprint

Title: Scalable Privacy Preserving Data Collection
Contractual Date of Delivery to the EC: 31.10.2021
Actual Date of Delivery to the EC: 29.10.2021
Authors: Andrej Čampa (COM), Klemen Bregar (COM), Denisa Ziu (ENG)
Participant(s): COM, ENG, DuCoop, CEL
Project: Boosting DR through increased community-level consumer engagement

by combining Data-driven and blockchain technology Tools with social
science approaches and multi-value service design (BRIGHT)

Work Package: WP4 – Community and Customer Digital Twin Models
Task: T4.1 – Scalable privacy preserving Data Collection
Confidentiality: Public
Version: 1.0.0

BRIGHT D4.1 – Data collection

BRIGHT 3(30)

Consortium - List of partners

Table 1. Consortium partner list

Partner
no.

Short name Name Country

1 ENG ENGINEERING - INGEGNERIA INFORMATICA SPA

Italy

2 TUC UNIVERSITATEA TEHNICA CLUJ-NAPOCA

Romania

3 IMEC INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM

Belgium

4 COM COMSENSUS, KOMUNIKACIJE IN SENZORIKA, DOO

Slovenia

5 SONCE SONCE energija d. o. o.

Slovenia

6 ISKRA ISKRAEMECO, MERJENJE IN UPRAVLJANJE ENERGIJE,
D.D.

Slovenia

7 EMOT EMOTION SRL

Italy

8 TNO NEDERLANDSE ORGANISATIE VOOR TOEGEPAST
NATUURWETENSCHAPPELIJK ONDERZOEK

Netherlands

9 CENTRICA CENTRICA BUSINESS SOLUTIONS BELGIUM

Belgium

10 ASM ASM TERNI SPA

Italy

11 DuCoop DUCOOP

Belgium

12 CEL CYBERETHICS LAB SRLS

Italy

13 DOMX DOMX IDIOTIKI KEFALAIOUCHIKI ETAIREIA

Greece

14 APC Asociatia Pro Consumatori

Romania

15 WVT WATT AND VOLT ANONIMI ETAIRIA EKMETALLEYSIS
ENALLAKTIKON MORFON ENERGEIAS

Greece

16 SUN SunContract OÜ

Estonia

BRIGHT D4.1 – Data collection

BRIGHT 4(30)

Table of Contents

Consortium - List of partners ... 3

List of Figures ... 5

List of Tables ... 6

List of Acronyms and Abbreviations .. 7

Executive Summary .. 8

1 Introduction ... 9

 Scope of the document ... 9 1.1

 Structure .. 9 1.2

2 Bright platform ... 10

 Data Acquisition Process ... 11 2.1

2.1.1 Data models ... 11

2.1.2 Identified Data Objects .. 11

 Data privacy ... 14 2.2

2.2.1 Privacy and security in Bright DLT solution for flexibility trading 14

3 Message queue system .. 16

 Scalability and Privacy ... 16 3.1

 Implementation example .. 17 3.2

4 Data access ... 19

 Introduction to the Pilot 2 ... 19 4.1

 Example Pilot 2 .. 20 4.2

4.2.1 Customer API.. 21

4.2.2 District Heating API .. 21

4.2.3 Location API ... 22

4.2.4 Main Distribution Board API .. 22

4.2.5 Sensor API .. 23

5 Conclusions .. 29

References.. 30

BRIGHT D4.1 – Data collection

BRIGHT 5(30)

List of Figures

Figure 1: BRIGHT system interoperability architecture. .. 10

Figure 2: Data privacy chain in Bright. ... 14

Figure 3: Data exchange in Bright. ... 18

Figure 4: Slovenian pilot API in a Swagger UI. ... 20

BRIGHT D4.1 – Data collection

BRIGHT 6(30)

List of Tables

Table 1. Consortium partner list .. 3

Table 2. List of Acronyms and Abbreviations ... 7

Table 3. List of identified objects and list of attributes. ... 12

Table 4. List of objects and attributes for Pilot 2 available historical data. 19

BRIGHT D4.1 – Data collection

BRIGHT 7(30)

List of Acronyms and Abbreviations

Table 2. List of Acronyms and Abbreviations

AAL Ambient Assisted Living

API Application Programming Interface

B-DLT Bright Distributed Ledger Technology

BRIGHT Boosting DR through increased community-level consumer engagement by
combining Data-driven and blockchain technology Tools with social science
approaches and multi-value service design

CPU Central Processing Unit

DLT Distributed Ledger Technology

DR Demand Response

EMS Energy Management System

EV Electric Vehicle

HTTPS HyperText Transfer Protocol Secure

HVAC Heating, Ventilation, and Air Conditioning

ID Identifier

IoT Internet of Things

JSON JavaScript Object Notation

PV Photovoltaic

REST Representational State Transfer

SOC State of Charge

URL Uniform Resource Locator

VEC Virtual Energy Community

QoS Quality of Service

SOA Service-Oriented Architecture

ZKP Zero-Knowledge Proof

BRIGHT D4.1 – Data collection

BRIGHT 8(30)

Executive Summary
The objective of this deliverable is to describe the initial Bright system architecture for data
collection and data privacy preservation. Data sources in Bright are heterogeneous and produce
great amounts of sensitive data that needs to be preserved and kept private.

The deliverable extends the contributions of previous tasks from WP2, especially the T2.3 in the
form of D2.4 Cross-Domain Data & Service Interoperability, where the interoperability layer for use
in Bright is conceptually defined. The proposed system architecture is based on currently known
data sources and components of pilots. This document reports the initial testing of the
interoperability components and performs the first experiment accessing the historical and live
pilot data. The final system architecture for scalable privacy-preserving data collection will be
reported and presented in an updated version of the current document scheduled for M30.

The current version of the document presents a scalable service interoperability layer that is a
base for the Bright system and works as a universal connector between different data producers
and consumers inside the Bright consortium. Data acquisition processes are defined by
introducing currently known data objects and a data privacy preservation strategy is defined to
secure all communications between the agents in the Bright system. An example of data
acquisition and access is given by a specific Bright pilot with available historical data in Section 4.2.

BRIGHT D4.1 – Data collection

BRIGHT 9(30)

1 Introduction
The report presents the first step and actions taken to integrate data from heterogeneous sources
into a Bright ecosystem. This report analyses the proposed solution for creating an interoperable
solution that is scalable and allows privacy protection and integration of existing data sources.

 Scope of the document 1.1
This deliverable D4.1 Data Collection is the first of the two reports for task 4.1. The first report is
mainly concerned with the evaluation of the possible solutions to be integrated into the Bright
architecture. The first report is reported in M12, while the second report is scheduled for M30.
The second report will present the full solution that will be integrated. The complete solution will
enable:

 Accessing existing data sets from all Pilots

 Providing access to historical data and live data for the creation of various services

 Retrofitting legacy data

This document uses the output of D2.3 DR technologies and tools specification where the
requirement and specification of tools are defined. It also includes the Bright architecture that
needs to be followed by all partners. Furthermore, this document also uses D2.4 Cross-domain
Data & Service Interoperability output, where the interoperability layer is defined in detail. Finally,
the evaluation of particular solutions is presented in this document that is aligned with the
interoperability vision of the Bright project solution.

The output of this document is the evaluation of the technologies used to create the
interoperability layer, in particular the Kafka streaming engine and the access to the existing data
from Pilot 2 to create new models within the Bright project (WP4, WP5 and WP6) from different
partners.

 Structure 1.2
Deliverable is structured in the following sections:

 Section 2 describes the Bright platform, data acquisition process, the status of data models
and the first version of identified data objects relevant for this deliverable.

 Section 3 presents the message queue system that will be used in the final Bright architec-
ture to create scalable and privacy-enabled solutions for streaming data among different
stakeholders. The Kafka streaming engine is evaluated as one of the possible solutions.

 Section 4 presents the solution to access the Pilot 2 live and historical data, which will be
used in developing various models in WP4, WP5 and WP6.

 Section 5 wraps the report with conclusions resulting from sections 2, 3 and 4 and outlines
the next steps required towards the second version of this document in M30.

BRIGHT D4.1 – Data collection

BRIGHT 10(30)

2 Bright platform
The key aspect of the Bright platform is data interoperability, which enables the exchange of data
between different components and actors within the platform by mapping various data sources to
predefined data models. Data models by the semantics written in their structures enable seamless
data mapping from many different data sources to the common data model and thus common
understanding of the data received from the data source.

The key component of any service-oriented architecture (SOA) is a service compatibility layer that
translates messages from each component in the SOA architecture and translates it to a message
that the target service on the other side of the SOA understands it. The main functions of a service
compatibility layer are:

 Message routing

 Message monitoring and control

 Resolving communication disputes between services

 Service provisioning and versioning control

 Quality of service (QoS) enforcement

Figure 1: BRIGHT system interoperability architecture.

A conceptual architecture of a Bright interoperability layer is shown in Figure 1 where only the
main logical components and interactions are depicted. It is responsible for data collection and
management, semantic adaptation and data integration. The current development stage of the

BRIGHT D4.1 – Data collection

BRIGHT 11(30)

Bright platform still doesn’t enable us to cement the final architecture of the platform that will be
used in the pilots. Current version of architecture of BRIGHT interoperability layer contains
message queue system which is currently implemented by Apache Kafka. Another component is a
group of data connectors that take care of translating the data between the historical data inside
the databases and data streams inside the message queue system. Data interfaces to the data
producers are implemented inside the data connector component which together with a semantic
adapter and data models provide needed data translation and thus data interoperability inside the
BRIGHT. Due to the implementation constraints during the development of the pilots and
platform, the components and specifications will still slightly change and will be reported in the
later deliverables (D2.5 Cross-domain Data & Service Interoperability in M19 and in the second
version of this document D4.1 Data collection in M30).

 Data Acquisition Process 2.1
Data collection starts with the measurement and acquisition devices, which are mostly connected
to the edge devices such as home gateways, EMS and others. Those devices capable of data
preparation and reporting can connect to the Bright interoperability layer and post the
measurements in a predefined data format that is understood by the data connector and semantic
adapter in the interoperability layer itself. The data models that are already defined inside the
Bright platform and others that will be defined during the development and integration of the
pilots and Bright platform, enable the seamless translation between the machine-specific
messages to the universal ontologies that can be understood throughout the Bright platform.

2.1.1 Data models
Data models as conceptual, and in many cases, visual tools are used to describe the data elements
and their relations inside the actual physical system. Thus, a data model is intended to represent
an entity from the physical world and can be used to enable interoperability between different
components in the information systems. The main objectives of using data models are:

 Accurate representation of data objects

 Definition of relations between the components of a data structure

 Provide a clear picture of the data

 Help in identifying missing data

 It unifies the IT infrastructure and makes it upgradeable and maintainable.

2.1.2 Identified Data Objects
Through collaboration between experts from the various stakeholders in the Bright consortium,
we have created a list of data objects to be used in the proposed pilots and in the implementation
of the Bright. Most of these data objects are conceptual representations of the devices identified
in the pilots. These identified data objects are listed in Table 3. , where the conceptual structures
of the data objects are represented by lists of device/object attributes.

BRIGHT D4.1 – Data collection

BRIGHT 12(30)

Table 3. List of identified objects and list of attributes.

Object Description Attributes

Smart meter Smart meter device, also
advanced metering
infrastructure (AMI) and
any legacy electric energy
meter

- ID
- Timestamp
- Active Energy/power
- Voltage
- Current
- Tariff

Energy meter Any other metering device
that is not utility meter
used by DSO

- Consumed Energy (day,
night, total)

- Current
- Frequency
- Voltage
- Active power
- Reactive power
- Power factor
- Timestamp

Energy meter heat Heat generation, e.g. heat
pump

- Operational state
- Generated power
- Input Temp.
- Output Temp.
- Energy
- Active power
- Timestamp

Generation Generation of energy, such
as PV.

- ID
- Measurement Unit
- Timestamp
- Active Energy Import
- Reactive energy
- Current
- Voltage
- Frequency
- Power
- Total yield

Storage Energy storage, mostly
battery systems

- Timestamp
- SOC
- Charge/discharge Power
- Operational state

Heat Storage Accumulation of the heat in
the water heat storage

- Temperature
- Min. Temperature
- Max. Temperature
- Volume
- Timestamp

EV Electric vehicle - ID
- Timestamp
- SOC

EV charging station Electric vehicle charging - ID (station and socket)

BRIGHT D4.1 – Data collection

BRIGHT 13(30)

station - Max. power
- Min. power
- Current
- Voltage
- Charging power
- Price
- Timestamp

Load Flexible or any other types
of loads (e.g. HVAC, heating
devices)

- Consumed electric ener-
gy/power

- Current
- ID
- Timestamp

Weather Historical and forecasted
weather for a location of
interest

- Date
- Time
- Temperature
- Precipitation
- Humidity
- Wind direction
- Wind speed
- Solar radiation
- UV index

Calendar Local/National calendar
with all types of events
(national holidays, other
free days and bank
holidays)

- Working days
- Weekend
- Public holidays and bank hol-

idays

Property and measurements e.g. indoor parameters
(temperature, humidity,
CO2)

- ID
- Timestamp
- Unit
- Value

Smart Heating Controller Remote monitoring of
heating system parameters
with the aid of smart
heating controllers attached
with the boilers of pilot
users enable control and
access of boiler’s
parameters

- Indoor/outdoor tempera-
ture,

- Space heating temperature
setpoint,

- Domestic hot water temper-
ature Setpoint,

- Boiler water temperature,
- DHW temperature, Heating

usage,
- Hot water usage,
- Boiler modulation,
- Gas consumption,
- Timestamp

Private living unit Mostly dwellings and office
spaces

- Temperature
- Temp. set point
- District heating Temp.
- District heat return Temp.

BRIGHT D4.1 – Data collection

BRIGHT 14(30)

- District heating flow
- Tapping Temp.

BEMS Building Energy
Management system

- Zones Temperature
- Humidity levels
- Technical setpoints
- Timestamp

 Data privacy 2.2
Encrypted communications are used in all interactions between the Bright platform and
components involving data exchange to ensure privacy at all levels of data transport from source
to analytics services.

Figure 2: Data privacy chain in Bright.

In many cases, for example, when using MQTT as a communication interface, recommended
authentication method is to use X.509 certificates in conjunction with Transport Layer Security
(TLS) protocol to establish a secure encrypted communication channel between the client and the
server. TLS cryptographic protocol use a handshake mechanism for different parameter
negotiations. After the handshake is completed, the communication channel is secured and no
third-party device or agent can eavesdrop on the communication anymore.

TLS protocol can be used on most of the communication channels between the Bright
components, thus preventing unauthorized agents from accessing sensitive data and most
importantly preventing unauthorized use of Bright platform resources (hardware and
communication).

2.2.1 Privacy and security in Bright DLT solution for flexibility trading
Data privacy on the Bright DLT solution is guaranteed by storing any and all personal data off-
chain, by the use of ZKPs, and by differential measuring. Indeed, data on chain is pseudo-
anonymized: the address of the prosumer smart contract, which receives the ZKP, is on chain,
while the physical address of the prosumer is not. What is shown on chain is not the actual energy
usage, but the deviation from a baseline. Essentially, the ZKPs hide the monitored energy data and
the requested flexibility profiles while registering on chain only the deviations. The ZK proof

BRIGHT D4.1 – Data collection

BRIGHT 15(30)

validation checks that the deviation is correctly computed. This entails that there is a minimum
risk of linkability between the on-chain address and the actual prosumer in real life.

From a security perspective, the blockchain trading network might encourage one-off
opportunistic behavior on the part of participants motivated by a high-enough prospective payoff.
For instance, a malicious actor could potentially alter n users' flexibility baselines to artificially
inflate the price of flexibility in order to sell at that higher price. To counter this risk, though price
is considered equilibrium price of bids and offers submitted on chain at the end of each trading
session, it is also compared to previous trading sessions. So, if there is a sudden, artificially inflated
price, the system would detect it.

Lastly, the risks of stealing / tampering data prior to the storage on the blockchain is a well-known
problem. Most proposed solutions are hardware-based. However, an analysis of these solutions
has been considered to be out of scope for the Bright project.

BRIGHT D4.1 – Data collection

BRIGHT 16(30)

3 Message queue system
Data acquisition is a critical aspect for Bright. Sensors, edge devices and external data sources are
just some of the producers that can supply information to the system. Due to its nature, data that
flows inside the system can be categorized as big data and, for this reason, a conventional way to
collect it cannot be the best solution for the project’s purposes. In order to address this limitation,
communication inside of Bright is managed with the use of a message queue system. This type of
tools not only provides an asynchronous and efficient way to collect a great amount of data, but
also allows the other components to access it independently. To be able to share data, all
applications or tools need to connect to the Bright’s message queue system. Since communication
between data producers and consumers is not implemented as a single point-to-point transition,
scalability of each tool can be achieved in an easier way. The selected implementation for Bright’s
system is Apache Kafka [1].

 Scalability and Privacy 3.1
Data sources’ availability and efficiency are subject to many different factors. For example, a pilot
might have access to a different set of sensors or devices and the number of those can even vary
over time. This dynamism makes it hard to forecast the amount of information that flows inside of
the system and, even after that, the value might not be consistent in time. The same argument
applies to tools and other applications that need to access the data in order to offer specific
services to the final user. For instance, a tool might not be available in the beginning but can be
added later.

To make the system reliable and able to sustain the fluctuating amount of data, the Bright’s
communication mechanism (i.e., the message queue system) needs to be able to scale whenever
necessary. One of the key and strong aspects of Kafka is precisely this. From the beginning, the
creators of the platform focused on creating a scalable and efficient way to handle a huge quantity
of messages. To achieve that, Kafka is designed to operate with a cluster of brokers, each one able
to manage many topics. Those brokers can be spread over different servers and even regions or
data centers, making Kafka able to scale over distributed machines. Performances can be
improved by common approaches such as increasing CPUs or memory for a specific server, but
other than that, scalability in Kafka can be achieved by [1,2]:

 Increasing the number of brokers: if the number of messages received by the system are
too many and brokers can’t keep up with this quantity, a possible approach is to add more
brokers to the cluster. Kafka can handle more than one broker and they can be distributed
over the network.

 Organizing topics: in Kafka, topics can be partitioned according to a system configuration.
Each partition holds a set of messages and if needed, producers can insert them in a
specific partition. For example, a partition might hold all the messages sent by the same
application. Even if partitions refer to the same topic, they are distributed over different
brokers. This optimization enables a system to dedicate a broker with a more powerful
setup (e.g., more CPU, memory) to handle the more resource-consuming partitions.

 Increasing the number of consumers: if the message elaboration time is slowing down the
system, the scalability of brokers will not help in this scenario. To improve the
performances then, more consumers are needed. To help with that, Kafka provides an

BRIGHT D4.1 – Data collection

BRIGHT 17(30)

approach based on the concept of consumer groups. The platform enables the creation of
a set of consumers and the possibility to assign specific topics to this group. For each of
those topics, every message received that fits in it will be assigned to only one consumer.
In other words, replicating the same consumer and assigning them to the same group will
ensure that a received message is elaborated only once.

Another concerning aspect of the data transmission regards the privacy of the information that
travels through the system.

Kafka cares about data security by implementing different policies and measures. Components
inside the platform can interact with each other in a secure way by enabling authentication with
SSL or SASL. Brokers and clients (both producers and consumers) can be set to use one or any of
those authentication means as defined in the cluster configuration. Thanks to that, security can be
shaped according to system or tool needs. Additionally, Kafka allows data encryption with SSL and
enables authorization for specific actions (such as write or read) on every single client.

Other than that, thanks to the wide variety of Kafka's plugins, standard behaviour can be extended
or modified to adapt to Bright's necessities. For example, another approach to data protection
might be the introduction of a specific connector that can alter information before sending them
to the actual consumers. Plugins such as Privitar [3] can apply a custom set of functions to each
produced value to redact it, substitute with a predefined value or, in general, manipulate the data
to protect it. Consumers will then receive the altered value and data privacy will be preserved
when the information is accessed by the final user.

 Implementation example 3.2
The sequence diagram shown in Figure 3 represents how data travels in Bright. Kafka has a central
role in the schema because information will be sent to all systems connected to the corresponding
topic, in a publish/subscribe approach. The steps are:

1. IoT devices, or other forms of data generation such as an external database, send data to
the system. From a Kafka perspective, all those clients take the role of producer. The data
is sent to a Data Connector by different means, depending on the implementation offered
by every single connector.

2. The Data Connector receives data from outside of the system. To make Bright able to

operate properly, data need to be normalized. Specifically, normalization is done with the
support of an external component, called a Semantic adapter, that transforms data
according to the chosen universal ontologies.

3. The Semantic Adapter converts information from the raw data generated by the producers

to the system structure with the support of energy-specific standards and ontologies. This
operation ensures that all the data that travels on the message queue system is
normalized.

4. After receiving the data back from the Semantic Adapter, the Data Connector publishes a

new event on the Kafka server, on a specific topic. Topics are created according to each
pilot’s custom system configuration and can be based on the data type or available

BRIGHT D4.1 – Data collection

BRIGHT 18(30)

services. Moreover, this operation might consider publishing data on specific partitions if
it’s a viable optimization strategy in the pilot’s environment.

5. Kafka server now allows data to be pulled by the consumers; in this example, consumers

are identified by Services (e.g., tools) and Data storage (e.g., common or shared
databases). To be able to pull information, a consumer must be subscribed to the specific
topic on which the data is published. Then, it will be able to retrieve the message and
proceed with its elaboration.

Figure 3: Data exchange in Bright.

BRIGHT D4.1 – Data collection

BRIGHT 19(30)

4 Data access
For the needs of data analysis and services in the Bright project, the historical data and streamed
live data are accessible through defined application programming interfaces (APIs) that are
encrypted and authenticated to prevent eavesdropping by third parties. Each Pilot has come to
the project with its own solution for external partners to access their data. Some data can be
accessed online in different data formats and some of them can be for now accessed offline (e.g.
historical data in CSV). This is more in detail described in D2.4. We will explain the data access on
an example in Pilot 2 from Slovenia.

 Introduction to the Pilot 2 4.1
The goal of the Slovenian pilot is to provide one-stop solutions for active consumers and citizens
who participate in innovation and create value together with other actors (all together forming a
virtual community). The solution of the DR program will be based not only on energy services, but
also on non-energy services such as detection of inappropriate or sudden deviations in
consumption of appliances or detection of environmental sensors outside the normal range in
living spaces.

The specificity of the Slovenian pilot project is that it does not have strict geographical boundaries,
as it takes place in a virtual community. A virtual community is formed by users of the platform:
consumers, prosumers and indirectly involved citizens. The awareness of the variable energy price
differs from one user group to another, which is reflected in a different understanding of comfort
management. Through the peer-to-peer exchange of tokens between platform users on the B-DLT
platform, the new energy services and non-energy services for personal security and AAL in the
market can be leveraged.

For the development of the services, the incorporation of historical data is of great importance.
Since the data comes from heterogeneous sources and extensive historical data was available
before the project started, Pilot 2 developed a unified API to access the available data.
Furthermore, in the course of the Bright project, some additional sensors will be installed that will
be used to improve the services related to the different programs of DR defined by the use cases
in D2.1.

The information objects already available for prototyping and developing initial services are
summarized in Table 4 for Slovenian Pilot.

Table 4. List of objects and attributes for Pilot 2 available historical data.

Information
object

Attributes Granularity Communication
frequency

(range)

Communication
protocol

Data format
and infor-

mation model

Smart meter Voltage, Active pow-
er,

Current,
1 & 3 phase,

ID, Timestamp

15 min On demand HTTP JSON

Energy meter Input Temperature,
output Tempera-

ture, Energy, Active

1 s On demand HTTP JSON

BRIGHT D4.1 – Data collection

BRIGHT 20(30)

power

Timestamp

Generation Energy/power,
ID, Timestamp

15 min On demand HTTP JSON

Storage Temperature,
Min. Temp.,

Max. Temp., Volume

Timestamp, ID

1s, 15 min On demand HTTP JSON

Property and
measurements

ID, Timestamp, Unit,
Value

15 min On demand HTTP JSON

Load Voltage, Active pow-
er,

Current,
3 phase,

ID, Timestamp

15 min On demand HTTP JSON

 Example Pilot 2 4.2
The Slovenian pilot deals with virtual communities and implicit and explicit DR programs. Due to
heteregoneus nature of the input data sources it is crucial that the well-defined interoperability
layer that supports scalability and privacy is defined. One such system is Kafka message queue
system as shown in Section 3. To access the live and historical data, Pilot 2 exposes data through
the REST (Representational State Transfer) API. The API has predictable, resource-oriented URLs
and uses HTTP response codes to indicate API errors. The API uses HTTP authentication and HTTP
verbs which are understood by standard off-the-shelf HTTP clients. All API requests are served by a
response in JSON format which can be easily interpreted and converted to other formats inside
the microservices and analytics components.

Figure 4: Slovenian pilot API in a Swagger UI.

BRIGHT D4.1 – Data collection

BRIGHT 21(30)

The API is used to query the historical sensor data of a specific asset or sensor. The API can be
used from the ‘Swagger UI’ endpoint or by directly sending the requests to the ‘/api/*’ methods
from a standard HTTP client.

4.2.1 Customer API
The customer API is used to query the data regarding the specific customer and locations inside
the particular pilot. API endpoints are the following:

 /api/Customer/Get:

◦ GET will return a JSON with a list of available customer ids and names:

[
 {
 "id": "string",
 "name": "string"
 }
]

 /api/Customer/{customerId}/Locations:

◦ GET will return a JSON with a list of available location ids and names:

[
 {
 "id": 0,
 "name": "string"
 }
]

4.2.2 District Heating API
The district heating API is used to query the district heating heat energy buying rates:

 /api/DistrictHeating/{sensorId}/Rate:

◦ GET will return a JSON with an information on heating energy rates for a district
heating unit:

[
 {
 "id": 0,
 "start": "2021-10-11T14:23:34.648Z",
 "end": "2021-10-11T14:23:34.648Z",
 "buyRate": 0,
 "sellRate": 0,
 "maxPowerBuy": 0,
 "minPowerBuy": 0,
 "maxPowerSell": 0,

BRIGHT D4.1 – Data collection

BRIGHT 22(30)

 "minPowerSell": 0
 }
]

4.2.3 Location API
Location API is used to query the list of available sensors and the list of available main distribution
board ids:

 /api/Location/{locationId}/MainDistributionBoards:

◦ GET will return a JSON with main distribution boards ids:

[
 {
 "id": 0
 }
]

 /api/Location/{locationId}/Sensors:

◦ GET will return a JSON with a list of available sensors at the selected location. Each list
item contains a sensor’s ID, sensor type and sensor name fields:

[
 {
 "id": 10,
 "type": "Main",
 "name": "main_meter"
 },
 ...
 {
 "id": 30,
 "type": "HeatPump",
 "name": "TČ1 OGR"
 }
]

4.2.4 Main Distribution Board API
The main distribution board contains the information of energy rates and available sensors on the
selected main distribution board:

 /api/MainDistributionBoard/{mainDistributionBoardId}/Sensors:

◦ GET will return a JSON with available sensors connected to the selected main
distribution board:

BRIGHT D4.1 – Data collection

BRIGHT 23(30)

[
 {
 "id": 10,
 "type": "Main",
 "name": "main_meter"
 },
 ...
 {
 "id": 30,
 "type": "HeatPump",
 "name": "TČ1 OGR"
 }
]

 /api/MainDistributionBoard/{mainDistributionBoardId}/Rate:

◦ GET will return a JSON with a list of rates for the selected main distribution board:

[
 {
 "id": 0,
 "start": "2021-10-11T14:46:00.897Z",
 "end": "2021-10-11T14:46:00.897Z",
 "buyRateMT": 0,
 "buyRateVT": 0,
 "sellRateMT": 0,
 "sellRateVT": 0,
 "maxPowerBuy": 0,
 "minPowerBuy": 0,
 "maxPowerSell": 0,
 "minPowerSell": 0
 }
]

4.2.5 Sensor API
Sensor API is used to query data related to selected sensors in the particular pilot case:

 /api/Sensor/{sensorId}/HeatPumpStatic:

◦ GET will return a JSON with static heat pump info for the selected heat pump device:

[
 {
 "id": 0,
 "turnOnCost": 0,
 "turnOffCost": 0,
 "isZeroOneAsset": true,
 "coefficientOfPerformance": 0,
 "fixedRunningConst": 0,
 "variableRunningConst": 0,
 "minUpTime": 0,
 "maxUpTime": 0,

BRIGHT D4.1 – Data collection

BRIGHT 24(30)

 "minDownTime": 0,
 "maxDownTime": 0
 }
]

 /api/Sensor/{sensorId}/HeatPumpDynamic:

◦ GET will return a JSON with dynamic info for the selected heat pump device-specific:

{
 "id": 0,
 "energy": [
 {
 "start": "2021-10-11T14:51:56.491Z",
 "end": "2021-10-11T14:51:56.491Z",
 "value": 0
 }
],
 "power": [
 {
 "dateTime": "2021-10-11T14:51:56.491Z",
 "value": 0
 }
],
 "calorimeterEnergy": [
 {
 "dateTime": "2021-10-11T14:51:56.491Z",
 "value": 0
 }
]
}

 /api/Sensor/{sensorId}/HeatStorageStatic:

◦ GET will return JSON with static info for selected heat storage device-specific:

{
 "id": 0,
 "minTemperature": 0,
 "maxTemperature": 0,
 "lossCoefficient": 0,
 "heatPumpIds": [
 0
]
}

 /api/Sensor/{sensorId}/HeatStorageDynamic:

◦ GET will return a JSON with dynamic info for a selected heat storage device:

{

BRIGHT D4.1 – Data collection

BRIGHT 25(30)

 "id": 0,
 "heatStorageTemperature": [
 {
 "dateTime": "2021-10-11T14:54:20.804Z",
 "value": 0
 }
]
}

 /api/Sensor/{sensorId}/DistrictHeatingStatic:

◦ GET will return a JSON with static info for a selected district heating device:

{
 "id": 0,
 "price": 0,
 "maxHeatPower": 0
}

 /api/Sensor/{sensorId}/DistrictHeatingDynamic:

◦ GET will return a JSON with dynamic info for a selected district heating device:

{
 "id": 0,
 "currentConsumption": [
 {
 "start": "2021-10-11T14:57:13.291Z",
 "end": "2021-10-11T14:57:13.291Z",
 "value": 0
 }
]
}

 /api/Sensor/{sensorId}/SolarStatic:

◦ GET will return a JSON with static info for the selected solar stations:

{
 "id": 0,
 "inclination": 0,
 "declination": 0,
 "latitude": 0,
 "longitude": 0,
 "peakPower": 0
}

 /api/Sensor/{sensorId}/SolarDynamic:

◦ GET will return a JSON with dynamic info for the selected solar stations:

BRIGHT D4.1 – Data collection

BRIGHT 26(30)

{
 "id": 0,
 "energy": [
 {
 "start": "2021-10-11T14:59:43.677Z",
 "end": "2021-10-11T14:59:43.677Z",
 "value": 0
 }
],
 "power": [
 {
 "dateTime": "2021-10-11T14:59:43.677Z",
 "value": 0
 }
]
}

 /api/Sensor/{sensorId}/TemperatureStatic:

◦ GET will return a JSON with static info for a selected temperature sensor device-
specific:

{
 "maxTemperature": 0,
 "minTemperature": 0
}

 /api/Sensor/{sensorId}/TemperatureDynamic:

◦ GET will return a JSON with a list of temperature measurements with corresponding
timestamps:

[
 {
 "dateTime": "2021-10-11T15:04:41.963Z",
 "value": 0
 }
]

 /api/Sensor/{sensorId}/ChargingStationStatic:

◦ GET will return a JSON with static info for a selected charging station device:

{
 "id": 0,
 "maxPower": 0,
 "minPower": 0
}

BRIGHT D4.1 – Data collection

BRIGHT 27(30)

 /api/Sensor/{sensorId}/ChargingStationDynamic:

◦ GET will return a JSON with dynamic data for a selected charging station device-
specific:

{
 "id": 0,
 "expectedChargingEndTime": "2021-10-11T15:06:25.096Z",
 "pricePerkWh": 0,
 "energy": [
 {
 "start": "2021-10-11T15:06:25.096Z",
 "end": "2021-10-11T15:06:25.096Z",
 "value": 0
 }
],
 "power": [
 {
 "dateTime": "2021-10-11T15:06:25.096Z",
 "value": 0
 }
]
}

 /api/Sensor/{sensorId}/MainMeter:

◦ GET will return a JSON with data from the selected mains metering:

{
 "id": 0,
 "energy": [
 {
 "start": "2021-10-11T15:06:53.246Z",
 "end": "2021-10-11T15:06:53.246Z",
 "value": 0
 }
],
 "power": [
 {
 "dateTime": "2021-10-11T15:06:53.246Z",
 "value": 0
 }
]
}

 /api/Sensor/{sensorId}/MainMeterStatic:

◦ GET will return a JSON with static info for a selected mains meter device:

{

BRIGHT D4.1 – Data collection

BRIGHT 28(30)

 "id": 0,
 "power": 0,
 "expectedYearlyUsageMT": 0,
 "expectedYearlyUsageVT": 0
}

BRIGHT D4.1 – Data collection

BRIGHT 29(30)

5 Conclusions
This deliverable reports on the data collection and processing from the pilot’s site as well as
existing historical data. Since the Bright architecture and the interoperability layer are designed in
parallel and defined in D2.3 and D2.4, the full Bright solution could not be evaluated yet. However,
the two technologies streaming engine Kafka and Pilot 2 API were tested and evaluated for
integration into the interoperability layer. The main advantage of Kafka, which is well suited for
the Bright project, is that it allows easy integration of heterogeneous data sources by subscribing
and publishing, is highly scalable, fits into a distributed system with low overhead, and is reliable
with intra-cluster replications. In addition, pilot’s existing APIs could be easily integrated into the
Kafka system, allowing legacy devices to be integrated more easily into the Bright solution.

As this is the first report, the final integration of data into the interoperability layer and the
deployment of the fully functional interoperability layer to connect to heterogeneous data and
services developed by partners will be shown in the second version of this report scheduled for
M30.

BRIGHT D4.1 – Data collection

BRIGHT 30(30)

References

[1] Apache Kafka. Apache Kafka n.d.

https://kafka.apache.org/documentation/#intro_concepts_and_terms (accessed October 19,
2021).

[2] Scalability of Kafka Messaging using Consumer Groups. Cloudera Blog 2018.
https://blog.cloudera.com/scalability-of-kafka-messaging-using-consumer-groups/ (accessed
October 19, 2021).

[3] Data Streaming Privacy, Security, and Compliance in Kafka. Confluent n.d.
https://www.confluent.io/blog/kafka-data-privacy-security-and-compliance/ (accessed
October 19, 2021).

