
BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 1(58)

Boosting DR through increased commun Ity-level consumer engaGement by combining Data -driven
and blockcHain technology Tools with social science approaches and multi -value service design

Deliverable D2.4 Cross-domain Data &
Service Interoperability

Authors: Andrej Čampa (COM), Klemen Bregar (COM), Vjekoslav Delimar (ISKRA), Denisa Ziu
(ENG), Giannis Kazdaridis (DOMX), Mente J. Konsman (TNO), Jevgenia Kask Savchenko (SUN)

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 2(58)

Imprint

Title: Cross-domain Data & Service Interoperability

Contractual Date of Delivery to the EC: 31.10.2021
Actual Date of Delivery to the EC: 29.10.2021
Authors: Andrej Čampa (COM), Klemen Bregar (COM), Vjekoslav Delimar (ISKRA),

Denisa Ziu (ENG), Giannis Kazdaridis (DOMX), Mente J. Konsman (TNO),
Jevgenia Kask Savchenko (SUN)

Participant(s): COM, ENG, ISKRA, TNO, DOMX, SUN
Project: Boosting DR through increased community-level consumer engagement

by combining Data-driven and blockchain technology Tools with social
science approaches and multi-value service design (BRIGHT)

Work Package: WP2 – BRIGHT Technology and Novel Multi-Value Service Design
Task: T2.3 – Data Models & Service and Platform Interoperability Specifications
Confidentiality: Public
Version: 1.0.0

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 3(58)

Consortium - List of partners

Table 1. Consortium partner list

Partner no. Short name Name Country

1 ENG ENGINEERING - INGEGNERIA INFORMATICA
SPA

Italy

2 TUC UNIVERSITATEA TEHNICA CLUJ-NAPOCA

Romania

3 IMEC INTERUNIVERSITAIR MICRO-ELECTRONICA
CENTRUM

Belgium

4 COM COMSENSUS, KOMUNIKACIJE IN
SENZORIKA, DOO

Slovenia

5 SONCE SONCE energija d. o. o.

Slovenia

6 ISKRA ISKRAEMECO, MERJENJE IN UPRAVLJANJE
ENERGIJE, D.D.

Slovenia

7 EMOT EMOTION SRL

Italy

8 TNO NEDERLANDSE ORGANISATIE VOOR
TOEGEPAST NATUURWETENSCHAPPELIJK

ONDERZOEK

Netherlands

9 CENTRICA CENTRICA BUSINESS SOLUTIONS BELGIUM

Belgium

10 ASM ASM TERNI SPA

Italy

11 DuCoop DUCOOP

Belgium

12 CEL CYBERETHICS LAB SRLS

Italy

13 DOMX DOMX IDIOTIKI KEFALAIOUCHIKI ETAIREIA

Greece

14 APC Asociatia Pro Consumatori

Romania

15 WVT WATT AND VOLT ANONIMI ETAIRIA
EKMETALLEYSIS ENALLAKTIKON MORFON

ENERGEIAS

Greece

16 SUN SunContract OÜ

Estonia

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 4(58)

Table of Contents

Consortium - List of partners ... 3

List of Figures .. 6

List of Tables ... 7

List of Acronyms and Abbreviations .. 8

Executive Summary .. 10

1 Introduction ... 12

1.1 Scope of the document ... 12

1.2 Cross-domain data interoperability .. 13

1.2.1 Data sharing and leveraging .. 15

1.3 Service interoperability ... 16

1.4 Interoperability requirements ... 18

1.5 The architecture of the interoperability layer .. 20

1.5.1 Architecture components description ... 21

2 Data Models ... 24

2.1 Three Perspectives of a Data Model ... 24

2.2 Types of Data Models .. 24

2.3 Information objects ... 26

2.3.1 Identify existing models ... 26

2.3.2 Data sources ... 26

2.3.3 Designing of the data models .. 29

3 Data Exchange Systems and Ontologies .. 31

3.1 SAREF ... 31

3.1.1 Overview .. 31

3.1.2 Relevance to BRIGHT ... 31

3.2 S2 Communication (CEN-CENELEC EN50491-12 standard series) 32

3.2.1 Overview .. 32

3.3 DLMS/COSEM .. 36

3.3.1 Overview .. 36

4 APIs ... 39

4.1 REST API ... 39

4.1.1 Introduction ... 39

4.1.2 Relevance to BRIGHT ... 39

4.1.3 Implementation aspect .. 39

4.2 Streaming API .. 41

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 5(58)

4.2.1 Introduction ... 41

4.2.2 Apache Kafka core concepts .. 42

4.2.3 Relevance to BRIGHT ... 43

5 Protocols .. 44

5.1 MQTT ... 44

5.1.1 Introduction ... 44

5.1.2 MQTT core concepts .. 44

5.1.3 MQTT security .. 45

5.1.4 Relevance to BRIGHT ... 45

5.2 CIP (I1) ... 46

5.2.1 Introduction ... 46

6 Conclusions .. 48

References.. 49

7 Annex 1 .. 51

7.1 Data template Pilot 1 .. 51

7.2 Data template Pilot 2 .. 53

7.3 Data template Pilot 3 .. 55

7.4 Data template Pilot 4 .. 56

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 6(58)

List of Figures

Figure 1. The architecture of the BRIGHT Interoperability layer ... 10

Figure 2. Typical Data flow ... 14

Figure 3. Relationship between different processing layers. .. 15

Figure 4. Service-based architectures MSA and SOA ... 17

Figure 5. Example of ESB stack, as shown in ref. [8] .. 18

Figure 6. Example of IoT taxonomy ... 19

Figure 7. The architecture of the BRIGHT Interoperability layer with the components 21

Figure 8. Relation model with attributes, tuples and field .. 25

Figure 9: High-level presentation of the data modeling process. ... 29

Figure 10. An overview of the main classes of SAREF and their relationships (Source: ETSI) 31

Figure 11. The logical view of components at the premises with the S2 interface encircled. 32

Figure 12. Example of interface class and it’s instances. ... 37

Figure 13. Topics and partitions in Kafka ... 42

Figure 14. Example of MQTT network. .. 44

Figure 15. P1 connector on RJ12 male plug. .. 46

Figure 16. Functional block diagram of P1 connector. .. 47

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 7(58)

List of Tables

Table 1. Consortium partner list .. 3

Table 2. List of Acronyms and Abbreviations ... 8

Table 3. Data modelling and Ontology main properties [4] .. 15

Table 4. List of identified objects and list of attributes ... 26

Table 5. Interface class with attributes and methods ... 38

Table 6. Pin assignment on P1 connector .. 46

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 8(58)

List of Acronyms and Abbreviations

Table 2. List of Acronyms and Abbreviations

AMI Automatic Metering Infrastructure

API Application Programming Interface

BEMS Building Energy Management System

BRIGHT Boosting DR through increased community-level consumer engagement by
combining Data-driven and blockchain technology Tools with social science
approaches and multi-value service design

CEM Customer Energy Manager

CHP Combined Heat and Power

CIP Consumer Information Push

CO2 Carbon dioxide

CSV Comma-Separated Values

DB Database

DHW Domestic Hot Water

DR Demand Response

DSO Distribution System Operators

DT Digital Twin

EC European Commission

EMS Energy Management System

EU European Union

EV Electric Vehicle

ESB Enterprise Service Bus

ETSI European Telecommunications Standards Institute

GDPR General Data Protection Regulation

GW Gateway

HBES Home and Building Electronic System

HDLC High-level Data Link Control

HTTP Hypertext Transfer Protocol

HVAC Heating, Ventilation, and Air Conditioning

ID Identifier

IED Intelligent Electronic Device

IoT Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation

LDN logical device name

MSA MicroService Architecture

PV Photovoltaic

REST Representational State Transfer

SAREF Smart Applications REFerence

SASS Singe Application Smart System

SM Smart Meter

SOA Service-Oriented Architecture

SoC State of Charge

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 9(58)

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

URL Uniform Resource Locator

Wi-Fi Wireless Fidelity

WP Work Package

XML Extensible Markup Language

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 10(58)

Executive Summary
The objective of this deliverable is to define a framework for cross-domain data and service
interoperability to be used in the BRIGHT consortium. Interoperability enables different services
and devices to freely exchange information throughout all the domains presented in the BRIGHT
services and pilots. This limits the need to rewrite all the existing code to be compatible with all
different existing device and service APIs but instead it needs to be adapted only to comply with
the BRIGHT cross-domain interoperability API. The aim is to make the data exchange as easy as
possible and facilitate the development of data driven and cross-domain services.

To meet the interoperability objectives, the document covers various topics related to the
definition of the architecture of the BRIGHT interoperability layer (see Figure 1). In addition, the
overview of most relevant standards for achieving interoperability inside the BRIGHT project is
presented and discussed. The BRIGHT consortium strives to reuse the technologies and standards
available, therefore increasing the openness of the solution and enabling faster adaptation of
services created in the case the solutions would be used and deployed outside the BRIGHT
ecosystem.

Figure 1. The architecture of the BRIGHT Interoperability layer

Following the definition and collection of the requirements for the interoperability layer, we have
started to analyse data models theory and application of data models to ensure the BRIGHT
ecosystem and its components can communicate in the same language by means of data
exchange. The data model section is further expanded by the presentation of a harmonized list of
already available data sources that will be used throughout the BRIGHT system and pilots. The list
will be further extended if new information objects will be identified during the project lifetime.

Further into the document, standardised data exchange systems and ontologies for IoT and energy
systems are presented (SAREF, S2 and DLMS/COSEM). The description of ontologies is followed by

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 11(58)

the definition of APIs in the BRIGHT project (REST API, and Apache Kafka streaming API). It is later
followed by the introduction of additional communication protocols that are used to access and
report device information like MQTT protocol for lightweight publish-subscribe communication
and unidirectional CIP protocol for access to the data from the metering device by the consumer.

The first analysis of the BRIGHT pilots, data sources and requirements taken by the T2.3 and
presented by this deliverable is the basis for creating BRIGHT-specific ontology that will follow in
the next version of this deliverable D2.5 scheduled for M19.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 12(58)

1 Introduction
Deliverable D2.4 aims to provide an overview of the BRIGHT Consortium's approach to
interoperability, primarily to standardize cross-domain access to data and to unify service
interoperability. The main components in this report are the first two bullet points, while the third
point is still in progress and will be part of the second version of this deliverable D2.5 scheduled
for M19:

- Overview of most relevant standards related to BRIGHT project interoperability. The
standards are grouped according to the scope (data, service), the level at which they are
used and the type of data.

- Preliminary data models for interfacing with BRIGHT sources and services once developed
and deployed.

- A multi-purpose vocabulary, that covers not only technical data, but also data generated

and obtained from social-science driven insight.

Once the design is finalized (i.e., D2.3 DR technologies and tools specification in M12) and service
development begins, the specified components will be reviewed and published in the second
version of this deliverable to address additional requirements found by a wider consortium and
potentially propose a more efficient solution that will be better aligned to the partner’s technical
needs.

1.1 Scope of the document
The presented deliverable describes the methodology for unifying the approaches taken among
different stakeholders and is a continuation of the work done in document D2.1 User group needs,
req. & advanced DR engagement scenarios towards interoperability. The aim of the document is
to identify different standards and analyse them according to the needs of pilots and service
developers. Once analysed, the document proposes the solution aligned inside the BRIGHT project
and the requirements defined by EC to unify the processes across the EU. The outputs of the
document are well-defined approaches with examples across different spectra mainly:

- Overview of existing technologies
- Creation of BRIGHT specific interoperability solution
- Analysis of different data models, from low-level data models used at sources and high-

level data models.
- Gathering of information about available and planned information objects and

harmonizing them.
- Preparing harmonized data for the creation of a BRIGHT data model solution.

The logical structure of the document is therefore

- Section 1 provides an overview of the document and existing solutions for achieving
interoperability. It also defines the BRIGHT interoperability layer.

- Section 2 addresses data models and harmonization of data sources to be used in the

design of the BRIGHT data model.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 13(58)

- Section 3 gives an overview of the data exchange system and ontologies. It focuses on the
two main ontologies SAREF and S2 Communication. At the same time, it also emphasises
using SM low-level data model DLMS/COSEM, since SMs are becoming one of the most
important data sources in DR solutions and built-in data models can also leverage
interoperability at the edge site.

- Section 4 analyses key APIs for creating the BRIGHT interoperability solution

- Section 5 analyses the protocols relevant to BRIGHT pilots.

The document ends with the conclusions and the questionnaire on the information objects
available in each pilot, which form the basis for creating a BRIGHT data model.

This document uses the BRIGHT architecture defined in D2.3 and analyses, creates and positions
the interoperability layer in the architecture to be used by all partners to establish
interoperability. The outputs of the document are the requirements and architecture of the
interoperability layer that needs to be taken into consideration when setting up pilots (WP7) and
when developing BRIGHT solutions in WP4, WP5 and WP6.

1.2 Cross-domain data interoperability
Data interoperability refers to the system's capacity to map different data sources to the data
model. Such a system can freely create, consume and exchange data with a clear knowledge of its
context and meaning. In order to reach data interoperability from the data source, we have to
follow a few crucial steps, as shown in Figure 2. The main components of the flow are:

- Data source: is any source that generates data, this could be simple devices (senors, IED,
IoT, xEMS, etc.), databases or even non-technical data acquisition obtained with various
methods. For example, describing socio-economic aspects with analytical methods or
manual direct or indirect acquisition of data from actors using various questionaries (WP3).

- Data Acquisition: This is the step that is in charge of integrating heterogeneous data
sources and facilitating its integration. The data acquisition component has to deal with so-
called 3Vs volume, velocity and variety [1], which can be extended to 7Vs [2], but this is out
of the scope of this delivery. Furthermore, the data can be structured or unstructured, it
can come from various sources with limited connectivity.

- Data Curation: The next step during the typical data flow is the process that can be done

on the raw data or on the big data. It is responsible for pre-processing the data such as
cleansing, anonymisation and semantic enrichment.

- Data Storage: Different types of data storage are needed; therefore, most of them must be
considered to reach full interoperability. In most cases, data storage is done with the
databases. However, in case of getting closer to the source of the data, even other types of
data storage might be available that mostly deal with a small chunk of data in real-time
(e.g. temporary such as registers and memory or persistent like files). In the case of a
common data lake or distributed storage is important for achieving autonomous, real-time
or batch processing. Therefore, storage should cover not only one type of database but

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 14(58)

many different types of databases such as relational, non-relational databases and time-
series databases.

- Data Security: In parallel to all the above described components, the security of the data is

of paramount importance. Data protection needs to be assured through all the levels,
furthermore, anonymization with all possible ethical issues needs to be considered. Data
security is more in detail described in D2.2: Privacy, Ethics and Legal Requirements.

Figure 2. Typical Data flow

In Figure 3, the data layer stack is presented. The data from the source (e.g. sensor) can transform
and evolve when it passes different processing layers (Edge, Fog and Cloud). To satisfy the speed
and reach interoperability, the data will gradually evolve from raw data to big data that is
semantically enriched with selected ontologies during the process of acquisition and curation.
First, at the Edge, raw data from sensors and other producers usually get processed and
temporarily stored. Data at the Edge can be used for real-time processing and creating real-time
loops. The processed data can be pushed to Fog or Cloud for additional processing to establish
higher observability and better awareness of the system as a whole. The Fog layer extends the
Edge layer to the Cloud, but it still ensures decentralized data processing. This ensures a better
awareness of the overall system compared to the Edge layer while creating an additional
intelligent layer that extends cloud computing capabilities closer to the Edge. In the case of Edge
and Fog computing, sensitive data can remain inside the network and only non-sensitive data is
pushed to the Cloud for central processing. Cloud fulfills the need of accessing big data quickly and
ensures easy scalability.

Since we are dealing with data models and ontologies, we first distinguish between these two.
Ontology provides a comprehensive hierarchical view of a domain and aims to develop general
taxonomies of what exists. On the other hand, the data model provides a flat and partial
representation of the data and aims to develop classifications within a particular application
domain [3]. More detailed features are summarized in Table 3.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 15(58)

Figure 3. Relationship between different processing layers.

Table 3. Data modelling and Ontology main properties [4]

Data Modeling Ontology

Partial account of conceptualization

Depends on the specific task and needs Application independent

Informal agreement between developer and
user

Generic knowledge

Not intended to be shared Sharable and reusable

Structure and integrity Semantics

Application-specific Open environment

The BRIGHT consortium will strive to reuse existing schemas, by determining the domain and
scope of the models, defining common entities and entity hierarchy, defining common attributes
and classes, and lastly mapping each pilot data to a common data model.

In the case of ontology, we strive to reuse existing ontology and, if needed, extend it with the
parts found during the process of analyzing existing ontologies and pilot existing data sets and
requirements.

1.2.1 Data sharing and leveraging
Additionally, to create added value from the data for the purposes of the internal stakeholders, it
may be beneficial to share the data (raw or processed) also to third parties. Exploiting the data of
the different users of various BRIGHT communities allows the creation of new added-value

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 16(58)

services that might be outside this project's scope. However, timely access to the cleaned data is
crucial for relevant parties to achieve fair and healthy market competition that will be mainly
beneficial for the energy market and end-users. In any case, GDPR compliance needs to be
respected.

1.3 Service interoperability
The basis for service interoperability are well-defined data models. The BRIGHT project will follow
already developed standards in service interoperabilities based on the distributed service-based
architecture. On the one hand, microservice architecture (MSA) is an application architectural
style and an application-scoped concept [5]. The main features of microservices are that they
decouple the components and thus simplify and improve the following:

- Agility: New technology can be introduced without affecting the rest of the components.
Each component can be independently tested.

- Scalability: Particular components can be scaled without affecting others achieving the
fastest possible response to workload demand and more efficient use of resources.

- Resilience: Failure of one service won't affect others.

On the other hand, Service-oriented architecture (SOA) is an approach to develop various
components that takes advantage of reusable software components and services via the service
interface. SOA connects applications together, making it easier to share data and functionality [6].
The main advantages of SOA are:

- Reusability: Self-contained and loosely coupled components in SOA enables to reuse of
these components without influencing other services.

- Maintainability: Each service is an independent unit which makes it easy to update and
maintain.

- Parallel development: SOA consists of layers, it enables the development of services in
parallel.

- Orchestration of services.

The more detailed conceptual architecture of MSA and SOA is shown in Figure 4 [7]. The main
advantage of the evolution of the services to SOA is that it eliminates point-to-point integration
that developers had to create for each project, exposing the parts of the components through
SOA. It eliminates the need to recreate deep integration with a new project. Therefore each
service consists of three components:

- Interface, that handles link between actor/user and service

- Contract, defines interactions between the service provider and service consumer. In
essence, the contract describes each service and defines information exchange.

- Implementation, is the service code.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 17(58)

Enterprise service bus (ESB) in the SOA is the layer that translates a message to the correct type
and sends translated message to the correct service. In the SOA with ESB any application can
behave as a server or client, providing greater flexibility and agility to the communication. The
concept of ESB [8] is analogous to the bus concept in computer hardware architecture, as shown
in Figure 5. The main functions of an ESB are:

- Routing of messages

- Monitor and control of communicated messages

- Resolve communication disputes among services

- Control deployment and versioning of services

- Enforce proper quality of communication service.

Figure 4. Service-based architectures MSA and SOA

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 18(58)

Figure 5. Example of ESB stack, as shown in ref. [8]

1.4 Interoperability requirements
In the BRIGHT project, four pilots are dealing with DR based on different communities, and
therefore partners are developing different analytic tools for different use cases as is described
more in detail in D2.1 User group needs, req. & advanced DR engagement scenarios. In each pilot,
different partners are involved with their own datasets, platforms and tools. Some of the tools will
be directly deployed at the edge, and some tools might be developed for one pilot and also tested
at other pilots. Therefore, BRIGHT will not impose a single centralized platform that partners need
to use. But instead, it will promote a federated platform, consisting of different platforms and
components from the partners that are able to exchange data and services with each other. For
connecting different platforms an interoperability layer is introduced with the following layers
[9,10]:

- Organizational. The most complex and high-level interoperability layer, where each
request must obey a master plan (business process, workflows, etc.). This level usually
requires human to human interaction.

- Semantic. This level deals with the meaning of the data, it improves the understanding of
the data that might be lost in low levels sharing of data. The common semantics need to be
agreed beforehand, this means compatibility in ontology, rules and workflows.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 19(58)

- Syntactic. Heterogenous systems such as systems using high-level programming languages
need to talk to each other. Therefore this category deals with the form that needs to be
defined to understand the format and structure of the data. An example of this category is
REST API, where the message's contents are serialized to be sent over the channel. The
data format used can be XML, JSON etc., which provides syntactic interoperability so
systems in different programming languages can exchange data with each other.

- Connectivity. The interoperating system must support the exchange of data at different
levels starting from the lowest hardware or machine level. Today at the machine level,
interoperability is standardized and implemented in a compiler, virtual machine and
operating system. On a higher level, the interoperability is assured with enclosing content
of information with message control information, for example an HTTP request which is
sent over a network using popular TCP/IP protocol that hides interaction details from the
user.

The interoperable system must follow these levels. Agreement on more levels means higher
interoperability. In BRIGHT, we will focus mostly on Connectivity, Syntactic and Semantic
interoperability. The interoperability seen from a different perspective for IoT example is shown in
Figure 6 [11].

Figure 6. Example of IoT taxonomy

This interoperability layer has to meet the following requirements:

- It must define a set of common data models, for example, semantic data models such as
ontologies.

- Since BRIGHT develops services for interdisciplinary citizen engagement, the existing

ontologies will be reused and expanded.

- A developed set of common data models must be open for later reuse and to enhance its
adoption.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 20(58)

- Fusion of heterogeneous data that will be used (e.g. Files (csv, xml, JSON, etc.), logs,
relational and non-relation databases).

- Define common API to improve integration among different platforms (it is beneficial to

reuse the existing solution).

- At the device level, a secure and authorized connection is required.

- At the communication level, sensitive information might be exchanged via encrypted
channels.

- The user level, role and access permission must be defined so only users with permitted

functionalities can use the system.

- Privacy and use of personal data must comply with GDPR

Additionally, the interoperability layer needs to be designed in a way it meets the requirements
related to Privacy, Cybersecurity, Ethics and Legal dimensions that are in more detail described in
D2.2: Privacy, Ethics and Legal Requirements.

Security is another important aspect of the interoperability layer to preserve data privacy on all
levels. Encrypted communications are used in all interactions between components of the BRIGHT
platform that involves data exchange. In practice, this means to encrypt data in transit between
applications (e.g. using Transport Layer Security (TLS) or Secure Socket Layer (SSL) protocols) and
enable authentication (e.g. using digital certificates X.509).

1.5 The architecture of the interoperability layer
Taking into account the functionalities and requirements defined by the BRIGHT project, we have
defined the architecture of the interoperability layer with the components depicted in Figure 7. In
the figure, for the sake of simplicity, only the main logical components and interactions are
depicted since the final implementation can be slightly different in Pilots. The interoperability
layer is responsible for collecting and managing data, semantic adaption or mapping and data
integration.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 21(58)

Figure 7. The architecture of the BRIGHT Interoperability layer with the components

1.5.1 Architecture components description
In the following section, the components of the interoperability layer are defined and described.

Component Data connector

Description This component provides a necessary connection to
field devices that can not meet the requirements for
interoperability and can not be modified due to
various restrictions. Usually, the systems connected
to this connector are Legacy devices already available
in the Pilots and Proprietary systems.

Main functionalities Read data from legacy and proprietary
systems

 Read from API

 Read CSV, JSON files

 Read from DB

 Push and pull enriched data

Interactions with other components SM: supporting legacy and new smart meters

 Edge devices: Such as EMSs and GWs and
others that do not support the integration of
semantic adapter

 Semantic adapter: to enrich the raw data into
semantic data using common data models

 Message queue system: to send the updated
data enriched with the common data models

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 22(58)

Component Semantic adapter

Description This component performs the data transformation from
raw data or non-semantic data to semantic data. The
component receives the data and passes the enriched
data to upstream components. This component should be
able to work on streams and batch data, which is defined
by the connector that the component connects to.

Main functionalities Data transformation (raw to semantic, or align
with BRIGHT ontologies)

 Can work with real-time and batch data

 Rules for each source of the data (connector,
source, type, …)

Interactions with other components Data connector: to enrich the raw data obtained
from the data connector into semantic data using
common data models

Component Message queue system

Description This component expands the ordinary point-to-point
messaging system to distributed publish-subscribing
messaging system. The queuing enables to divide the
processing of data over multiple instances to increase
scalability. In addition, fault tolerance is ensured by
storing data on a disk, configured by retention policies.

Main functionalities Publish and subscribe to streams

 Fault-tolerant (replication)

 Distributed system

Interactions with other components Data connector: to obtain the enriched data from
legacy systems

 Connector: to expand the functionalities on data
streams with data processing and storage

Component Connector

Description This component guarantees a scalable and reliable
stream of data between the Message queue system
and other components. In addition, it is a centralized
data hub enabling easy integration between
databases, file systems, etc.

Main functionalities Enables quick definition of connectors to move
large data sets in and out from queue system

 Connect to various databases, file systems and
dashboards to make them available for stream
processing

 Support real-time and batch-oriented systems

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 23(58)

Interactions with other components Message queue system: to connect to data
streams

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 24(58)

2 Data Models
A data model is a conceptual or visual tool to describe and represent the information about data
elements and the connections between them [12] and deals with data types and structures,
operation and consistency. It is meant to represent the real world, the information that can be
used for later use and would generate added value. The data model focuses on what data is
needed and how it should be organized. The primary goal of using data models are [13]:

- Ensures the data objects are accurately represented since omission might lead to incorrect
results.

- Data model structure helps to define relations.

- Provides a clear picture of the data.

- Help to identify missing/redundant data.

- It unifies the part of the IT infrastructure to be more easily upgradable and easier to

maintain.

2.1 Three Perspectives of a Data Model
Different types of data models exist depending on the current stage of the data modeling process
[14]:

- Conceptual or domain data model: defines the high-level structures, concepts and
semantics of a domain. It is usually created as a precursor to later stages of data model
development.

- Logical data model: this model extends the conceptual data model by clarifying the various
logical entities (types or classes), data attributes and their relationships.

- Physical data model: presents the actual data model implementation.

These three data model perspectives are relatively independent of each other. This property of
intermodel independence enables the change in one data model type without affecting the other
two data models (e.g. changing database storage technology etc.).

2.2 Types of Data Models
Several types of data models exist in the literature and, from them, mainly generic data models
and semantic data models are being used.

Entity-Relationship Diagrams or as is frequently called entity-relationship model, is an abstract or
conceptual presentation of structured data. It is produced by a relational schema modelling
method called entity-relationship modelling to produce a conceptual data model type (semantic
data model). It typically represents a model of a system and its requirements in a top-down
fashion (created from abstract system representations created by the experts from the subject
area and can be used as a template). They are mostly used in the information system design
process during the requirements analysis to describe the system's information needs.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 25(58)

Generic Data model defines general relation types, for example, relation data model. A relation
data model describes the data, its relationship, semantics and constraints on the data in the
relational database [15] with an example shown in Figure 8.

Figure 8. Relation model with attributes, tuples and field

There are also other types of generic data models, such as database models, geographical data
models, etc.

A semantic data model is a high-level description and structuring to improve the knowledge of
variables, their interactions, priory, dependencies and correlations among them. The data is
presented with named objects, sets of values, relationships and constraints over these objects. For
example, an ontology is a schema that contains a set of:

- Concepts, to describe a certain reality (in our cases mostly devices or functions);
- Relations among concepts (type of appliance performs some function, e.g. HVAC performs

a start or stop);
- Axioms, that present constraints of the concepts (e.g. the appliance should start in the time

frame from 2 p.m. and 4 p.m.);

An overview of one of the ontologies is shown in Figure 10.
The data models define the common language for received and sent data among different
components developed inside BRIGHT. This assures the rest of the components can understand
the data according to the data model. Therefore, whenever there is an exchange of data among
components from different platforms, the data needs to be exchanged according to common data
models. However, for the internal communication among components, especially for systems with

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 26(58)

limited processing capabilities at the edge, the more efficient data models can be used and might
be more appropriate and may not be defined here.

According to the needs, we can define a few interaction scenarios:

- Services or components are developed from scratch. In this case, the easiest way is to build
the components according to the common data models.

- Services or components developed from scratch, but they do not require semantic data. In

this case, we do not enforce using the defined data models.

- Legacy tools that already use different models. In this case, a wrapper could be used that
transform the data to the BRIGHT common data models.

2.3 Information objects
In the D2.3, the first identification of data coming from different sources were identified coming
from different pilots. Since different services/tools or actors are involved in the project, the data
harmonization needs to be performed with the following steps:

- Identify already existing data models that can be used as reference.
- Identify various data sources relevant to BRIGHT actors.
- Design data models.

In this document, only the first harmonization steps were performed, while the completely
defined data models will follow in the later stage in D2.5.

2.3.1 Identify existing models
In the first version of the deliverable, we have identified and described the standards used by the
BRIGHT project (sections 2.1, 2.2 and 2.3) and the BRIGHT data model will be built upon it.

2.3.2 Data sources
In this section, the initial list of data sources that need to be enriched and harmonized with
ontologies are listed in Table 4. The final consolidated list will be available in D2.5. In the list, we
have tried to include also the data sources that cover the social-related data to be gathered as a
result of efforts in WP3. Since WP3 is still shaping its strategies for data collection, we have
introduced two potenital objects as placeholders to be further considered in the second iteration
of this document. The introduced social-related data objects are Schedule and Citizen input.
Schedule does not relate to aparticular citizen, but to the typical representative of the group or its
DT. In the case of Citizen input, beyond the actual data gathered through feedback tools such as
questionnaires, the idea is to introduce the information object that enables the GDPR compliance
from a technical point of view (e.g. the right to be forgotten). Indeed, all personal data gathered
will be processed in compliance with existing rules and regulations, as detailed by the
requirements in D2.2.

Table 4. List of identified objects and list of attributes

Object Description Attributes

Smart meter Smart meter device, also
advanced metering

- ID
- Timestamp

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 27(58)

infrastructure (AMI) and
any legacy electric
energy meter

- Active Energy/power
- Voltage
- Current
- Tariff

Energy meter Any other metering
device that is not a utility
meter used by DSO

- Consumed Energy (day, night,
total)

- Current
- Frequency
- Voltage
- Active power
- Reactive power
- Power factor
- Timestamp

Energy meter heat Heat generation, e.g.
heat pump

- Operational state
- Generated power
- Input Temp.
- Output Temp.
- Energy
- Active power
- Timestamp

Generation Generation of energy,
such as PV.

- ID
- Measurement Unit
- Timestamp
- Active Energy Import
- Reactive energy
- Current
- Voltage
- Frequency
- Power
- Total yield

Storage Energy storage, mostly
battery systems

- Timestamp
- SoC
- Charge/discharge Power
- Operational state

Heat Storage Accumulation of the heat
in the water heat storage

- Temperature
- Min. Temperature
- Max. Temperature
- Volume
- Timestamp

EV Electric vehicle - ID
- Timestamp
- SoC

EV charging station Electric vehicle charging
station

- ID (station and socket)
- Max power
- Min power
- Current

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 28(58)

- Voltage
- Charging power
- Price
- Timestamp

Load Flexible or any other
types of loads (e.g.
HVAC, heating devices)

- Consumed electric energy/power
- Current
- ID
- Timestamp

Weather Historical and forecasted
weather for a location of
interest

- Date
- Time
- Temperature
- Precipitation
- Humidity
- Wind direction
- Wind speed
- Solar radiation
- UV index

Calendar Local/National calendar
with all types of events
(national holidays, other
free days and bank
holidays)

- Working days
- Weekend
- Public holidays and bank holidays

Property and
measurements

e.g. indoor parameters
(temperature, humidity,
CO2)

- ID
- Timestamp
- Unit
- Value

Smart Heating Controller Remote monitoring of
heating system
parameters with the aid
of smart heating
controllers attached with
the boilers of pilot users
enable control and
access of boiler’s
parameters

- Indoor/outdoor temperature,
- Space heating temperature

setpoint,
- Domestic hot water temperature

Setpoint,
- Boiler water temperature,
- DHW temperature, Heating usage,
- Hot water usage,
- Boiler modulation,
- Gas consumption,
- Timestamp

Private living unit Mostly dwellings and
office spaces

- Temperature
- Temp. setpoint
- District heating Temp.
- District heat return Temp.
- District heating flow
- Tapping Temp.

BEMS Building Energy
Management system

- Zones Temperature
- Humidity levels
- Technical setpoints

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 29(58)

- Timestamp

Schedule Scheduled activity for a
particular user/group

- Activity
- Day of the week
- Start time
- Stop time
- Citizen group
- User

Citizen input An item holding info of
user preferences settings

- User
- Consent
- Preference
- Citizen group

2.3.3 Designing of the data models
The identified objects with their attributes are the base on which the BRIGHT project is starting to
create the unified data model. To leverage the interoperability, the existing standards are going to
be used where possible.

The data modelling process will be used to define and analyze the data requirements needed to
support the processes in BRIGHT, Figure 9. Data models will provide a needed interoperability
framework for data that will be used within the BRIGHT information system.

Figure 9: High-level presentation of the data modeling process.

The data modeling process will produce three different types of data model schemas – conceptual,
logical, and physical - while progressing from the initially identified data objects and identified

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 30(58)

requirements to the actual implementation of data models inside the BRIGHT interoperability
layer.

The identified data objects and requirements will be initially represented in the form of a
conceptual data model. This will represent the initial technology independent specifications about
the data and will be used as a tool to discuss all related requirements with the involved BRIGHT
entities.

The conceptual data model will be translated into the logical data model in the following step. The
logical data model will hold the specifications of data structures that can be implemented in the
BRIGHT semantic adaptation component inside the BRIGHT interoperability layer and inside the
involved databases.

In the final step in a data modeling process, physical data models will be created based on
previously defined logical data models. Physical data models will organize data into tables, data
access accounts, access specifications, data translation specifications etc.

The presented data modeling process and resulting data models are progressive. Data models will
evolve during the following discussions and implementations to cover all needs of the BRIGHT
interoperability layer and thus the BRIGHT system. The specifications of data models will change in
response to changes and extensions of currently identified data objects and processes in a BRIGHT
project.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 31(58)

3 Data Exchange Systems and Ontologies
3.1 SAREF

3.1.1 Overview
IoT fragmentation is one of the main threats in large-scale IoT adoption. To address this, the
current fragmented landscape of IoT technologies requires standardised interfaces and data
models to ensure interoperability. In this context, one of the main challenges to ensure
interoperability is to have a set of standard data models that allow not only information but also
the meaning of that information to be exchanged to avoid any misinterpretation between senders
and receivers.
The SAREF (Smart Appliances REFerence) ontology [16] has been developed and standardized by
the European Commission in close cooperation with ETSI (European Telecommunications
Standards Institute) to provide a modular and domain-independent semantic layer for smart
appliances. The core concepts of SAREF ontology are depicted in Figure 10.

Figure 10. An overview of the main classes of SAREF and their relationships (Source: ETSI)

The starting point of the SAREF ontology is the concept of Device representing tangible objects
designed to accomplish one or more Tasks in different types of locations and associated with
States. The ontology offers a list of basic Functions that can be combined towards more complex
functions in a single device. A Service can represent one or more functions offered by a device that
wants its functions to be discoverable, registerable, and remotely controllable by other devices in
the network. A device can be characterized by a Profile that can be used to collect information
about a certain Property or Commodity (e.g. energy or water) for optimizing its usage in the
home/building in which the device is located. Together with the Measurement, Property and
UnitOfMeasure, the ontology allows to relate different measurements of a given device to
different properties measured in different units.

3.1.2 Relevance to BRIGHT
In the BRIGHT project, SAREF ontology will be exploited for the development of the Interoperable
home automation gateway tool as part of task 6.6. The home-IoT Gateway of DomX provides for
monitoring and control of the home environment, integrating various home
sensors/controllers/appliances belonging to different vendor ecosystems and making them
interoperable.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 32(58)

DomX Interoperable gateway device will be extended to support SAREF ontology. To this purpose
the SAREF4ENER [16] variant will be exploited. SAREF4ENER is an extension of SAREF for the
Energy domain that was created in collaboration with Energy@Home [17] and EEBus [18], the
major Italy and Germany-based industry associations, to enable the interconnection of their
different data models. SAREF4ENER is an OWL-DL ontology that extends SAREF with 63 classes, 17
object properties and 40 data type properties. SAREF4ENER focuses on demand response
scenarios, in which customers can offer flexibility to the Smart Grid to manage their smart home
devices by means of a Customer Energy Manager (CEM). The CEM is a logical function for
optimizing energy consumption and/or production that can reside either in the home gateway or
in the cloud. Moreover, the Smart Grid can influence the quantity or patterns of use of the energy
consumed by customers when energy-supply systems are constrained, e.g. during peak hours.
SAREF4ENER is published as an ETSI tecnical specificatoion (ETSI TS 103 410-1).

3.2 S2 Communication (CEN-CENELEC EN50491-12 standard series)

3.2.1 Overview
The EN 50491-12-1 architecture focuses on the premises side of the smart grid and is mainly
concerned with the communication between smart devices and CEM. Figure 11 provides a logical
view of the components that can be found at the premises side.

Figure 11. The logical view of components at the premises with the S2 interface encircled.

The logical view shows all of the relevant smart grid systems on the premises, the red circle

outlines the scope of CEN-CENELEC’s 50491-12 standard series. Within this standard series, the so

called S2 interface is being specified in the EN50491-12-2 standard [19].

The S2 interface is used to communicate the energy flexibility of smart devices to the Customer

Energy Manager (CEM). The CEM also uses S2 to send instructions to smart devices to exploit their

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 33(58)

flexibility in a specific way. The components involved in the S2 communication are described

below.

 Smart Devices. Smart Devices can offer energy flexibility by deviating from their normal

consumption/production pattern. These devices can be controlled externally so that they

can be integrated into the premises smart grid system. These devices are very diverse and

perform a wide range of functions within a home or a building, such as white goods, PV,

HVAC, etc. In Figure 11, this is reflected by the different terminology that is being used.

Smart devices/appliances represent devices like white goods. The Home and Building

Electronic System (HBES) are systems that are used in a home or building automation and

perform functions such as switching, open and closed loop control. Single Application

Smart System (SASS) are systems that are composed of a group of devices that work

together for a single application. Think of an HVAC system that is composed of components

such as fans, chillers, radiators etc. Controlling a single component within such a system for

flexibility purposes might disrupt the correct functioning of the complete system.

Therefore the entire system with all of its components should be treated as a single source

of flexibility.

As is apparent, these devices are very diverse in their functionality. This also goes for the

protocols that are used to control these devices externally. Examples of such (IoT)

protocols are KNX, EEBUS/SPINE, ModBus, Zigbee, Bluetooth, WiFi, Z-Wave, but also

proprietary protocols. The same holds for the data models/parameters that are used. It is

virtually impossible for a Customer Energy Manager to be aware of and support all possible

permutations of functionality, protocols and data models. This is where the Resource

Manager and the S2 interface come in.

 Resource Manager. The Resource Manager is an intermediary logical component that on
one side communicates with the smart devices using its native protocol and data model
and understands the functionality that the device performs. On the other side, it
communicates the flexibility options of the devices to the Customer Energy Manager
(CEM). The CEM is only interested in the flexibility that the device has to offer, not in all of
the available detailed device parameters and protocols. These would simply overwhelm
the CEM and would require adaptations to be made to the CEM every time a new device
would be connected.

The Resource Manager translates the low level device information into more high level
information on the energy flexibility that is offered to the CEM via the S2 interface. This is
not a straightforward mapping; information that is not relevant for energy flexibility needs
to be filtered out while other information needs to be enriched to make it relevant for
energy flexibility. Take a thermal buffer for example; a Resource Manager will have to
understand what the capacity of that buffer is and how fast it can be heated. The S2
Control Types sections below describe in more detail which energy flexibility information is
conveyed over the S2 interface. The Resource Manager will also receive instructions over
S2 from the CEM to use the flexibility in a particular way.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 34(58)

In providing flexibility to the CEM, the Resource Manager will also take user comfort as well
as the operational boundaries/safety margins of the device into account. These aspects will
also be checked if the Resource Manager receives instruction from the CEM. If user
comfort or the operational boundaries/safety margins are compromised by executing a
CEM instruction it is the responsibility of the Resource Manager to reject that instruction.

 Customer Energy Manager. The CEM takes into account the flexibility that is being
provided by all Resource Managers on the premises. Based on its optimization objectives
and additional external information/incentives, it will decide how to use that flexibility to
meet its objectives as closely as possible. Examples of CEM objectives could be to optimize
dynamic energy tariffs, promote self-consumption as much as possible or to help the DSO
alleviate congestion. After the CEM decides on how to use the flexibility, it will send
instructions to the Resource Managers over S2.

By using S2, a lot of the implementation details of the devices are hidden for the CEM and
it can focus on its core business: managing energy flexibility. This enables the CEM to
connect to a wide variety of devices with little effort, thus promoting interoperability.

S2 Control Types
Resource Managers are all capable (if supported by the underlying smart device) to provide
power/energy measurements and forecasts. In addition to these basic and generic functions, the
S2 interface features five control types representing different energy flexibility types. A Resource
Manager will map the flexibility of the device it represents onto one of these control types. The
CEM will only have to implement these control types to be able to connect to all devices via their
respective Resource Managers. The control types are described below:

 Power Envelope Based Control. This control type is used for devices that can not be
controlled by the CEM to adhere to a specific value for their production or consumption.
They can, however, be asked by the CEM not to exceed certain power limits over time. A
typical example of such a device would be a PV panel. The CEM cannot directly control its
production as this is dependent on the amount of sunshine, but it can ask the PV panel not
to exceed a certain production limit, also known as curtailment. This feature is very useful
for congestion management for example. When there is too much production for the local
grid to handle, this control type can be used to limit the output of the PV panel to a
manageable level.

 Power Profile Based Control. The power profile based control type is typical for devices
that perform a function with a corresponding power profile that is known or can be
predicted beforehand. Their main flexibility comes from the ability to change the start time
of that power profile. White goods, such as a washing machine with a delayed start option,
are good examples of this category. For example, a consumer fills the washing machine
with dirty clothes, selects a program and chooses the final time by which this program
should be finished. The CEM can then decide what the best possible start time is, giving its
optimization objectives.

Another type of flexibility is offered by this control type is the ability to choose between
multiple alternative power profiles. The heating cycle of the washing machine might have
alternative profiles, e.g. one that consumes less power but requires more time to heat the

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 35(58)

water and one that consumes more power and takes less time to reach the target
temperature. The CEM can then choose which one of these alternatives to use.

 Operation Mode Based Control. Devices that fall within this control type have the
possibility to control the amount of power they produce or consume, without significant
effects on their future flexibility options. Typical examples for this control type are diesel
generators and variable electrical resistors. Such devices are often useful for balancing
microgrids. Operation mode devices offer a lot of flexibility; they can assume a range of
power levels at almost arbitrary moments in time. When this type of flexibility would be
modelled with power profiles, as used for power profile based control, the number of
possible permutations would rapidly grow beyond practical limits.

To avoid such issues, the operation mode control type is modelled as a state machine. A
resource manager can declare multiple operation modes for a device. An operation mode
is a mode/state that a device can find itself in, that is associated with a specific power
value. For example, a diesel generator can have three operation modes: one for being off,
one for running at reduced power and one for running at full power. The “off” operation
mode has a power value of 0 W associated with it, the “reduced power” operation mode
has a power value of -1800 W (a negative value denotes production), and the “full power”
operation mode has a power value of -3000 W.

Transitions between operation modes are also explicitly specified. This way, the possible
transitions between operation modes may be restricted. Transitions can also be equipped
with timing constraints: a device can for example express that it needs to run for a minute
in “reduced power”, before it can move on to “full power”. This can be achieved by
defining a “minimum on time” timer that blocks the transition when its value is not equal
to 0.

The CEM can send instructions that will tell the Resource Manager which operation mode
to go to next. These instructions also contain timestamps to inform the Resource Manager
on when the transition to the next operation mode should be made.

 Fill Rate Based Control. The fill rate-based control type can be used for devices that have
the ability to store or buffer energy. How energy is stored or buffered does not matter, as
long as there is a means to measure how full the storage or buffer is.

There are many examples of devices that can store or buffer energy. Stationary batteries
and electric vehicles are examples of devices that store energy in batteries. Heating devices
such as CHPs, (hybrid) heat pumps or boilers can buffer energy in a dedicated heat buffer
(typically a thermally insulated water tank), but a room with an allowable bandwidth for
the temperature can also be used as a buffer.

Finally, there are also devices that produce cold, like air conditioners, fridges and freezers.
Just like heat, cold can be buffered. There are even more ways to buffer or store energy
imaginable, such as storing energy in the form of hydrogen, air pressure, water pressure or
angular momentum.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 36(58)

The main component of this control type is the storage itself. A device shall be able to
inform the CEM about its fill level, a measure of how full the storage is, and the lower and
upper bounds that the fill level should remain within. If applicable, it can also inform the
CEM about its target fill level and by when that should be reached. This would be useful
when charging an EV for instance. In addition to the storage there are also actuators that
can affect the fill level of the storage. E.g. an electrical heating element in a hot water
buffer.

The behaviour of the actuators is described with a state machine, just like the operation
mode based control type. In this case however the states also specify what their influence
on the fill level of the buffer is.

 Demand Driven Based Control. Demand Driven Based Control can be used for systems that
are flexible in the type of energy carrier they use, but are not capable of buffering or
storing energy (in that case, Fill Rate Based Control should be used). A typical example is a
hybrid heat pump, that generates heat using either electricity (using a heat pump) or
natural gas (using a gas boiler), but doesn’t have a thermal buffer. The hybrid heat pump
must deliver a given amount of heat (hence demand driven), but can still decide whether
to generate this heat using electricity or natural gas. Typically, such systems favour the
heat pump, but use the gas boiler in case the heat demand cannot be fulfilled by the heat
pump alone or when there is a shortage of capacity in the electricity grid.

Similar to the Fill Rate Based Control, Demand Driven Based Control has the concept of
multiple actuators. Again the behaviour of these actuators is described using a state
machine. This time the states do not specify their influence of the fill level of the buffer is,
but they specify a supply rate that can be matched with the demand. The CEM can select a
state for each actuator as long as the demand is being matched by their aggregated supply.

3.3 DLMS/COSEM

3.3.1 Overview
In March 2009 European Commission issued Mandate M/441 which enabled standardization and
interoperability of smart metering functionalities and communication in multi-utility systems and
applications across Europe and thus improve customers’ awareness of actual consumption and
adaptation to their demands.

DLMS/COSEM is a global standard for smart meters to provide interoperability between different
energy metering devices in an efficient and secure manner. The main components of the standard
specify object-oriented data model, application layer protocol and communication profiles.
DLMS/COSEM specification is developed and maintained by the DLMS User Association [20]. The
result of its technical work is published in the public domain as DLMS UA Books, internationally is
standardized under IEC 62056 DLMS/COSEM set of standards. Core standards are:

 IEC 62056-5-3, DLMS/COSEM application layer [21],

 IEC 62056-6-2, COSEM interface classes [22],

 IEC 62056-6-1, OBIS Object identification system [23].

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 37(58)

Even though specifications have a common heading, “Electricity metering data exchange – The
DLMS/COSEM suite” it is not specific only to electricity metering but also used for gas, water and
heat metering.

If DLMS/COSEM is a language, then the semantics of the language is described by the COSEM
object model and the syntax of the language is specified by DLMS.
Metering infrastructure in pilot 2 (see also Section 8.2) will use DLMS/COSEM compliant smart
meter provided by Iskraemeco.

Even though smart meters are part of DSO’s data collection systems its application layer, object
models and communication interfaces are implemented in a way the third parties can access data
that are relevant to BRIGHT. Data exchange between the metering device and collection system is
based on the client-server relationship. The metering device acts as a server and the collection
system acts as a client.

Physical smart meter device is called a physical device and consists of several logical devices. It is
mandatory that each physical device contains management logical devices. The COSEM logical
device contains a set of COSEM objects. Each logical device has its own address provided by the
addressing scheme of the lower layers of the protocol stack. The logic device has its own name
called COSEM logical device name (LDN) and the manufacturer ensures that LDN is unique.

Term object in COSEM is defined as a collection of attributes and methods. The first attribute of
the object is the logical_name and is one part of the identification of the object. Object’s logical
name is described with OBIS codes. Another common attribute objects have is value.

An object can have a number of methods to, for example, set or reset the value of the attribute.

Common characteristics of objects are generalized as interface class and each such class has its
own ID called class_id. Instantiations of such classes are called COSEM interface objects.

Example of interface class and its instances is shown in Figure 12.

Figure 12. Example of interface class and it’s instances.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 38(58)

Where interface class presented is Register with two objects Total Positive Active Energy and Total
Positive Reactive Energy. Interface class overview is presented with a table with the included class
name, the attributes and the methods, Table 5. Each attribute and method is described in detail.

Table 5. Interface class with attributes and methods

Class name Cardinality class_id, version

Attributes Data type Min Max Def Short name

1. logical
name

(static) octet-string x

2. … (…) … x + 0x…

Specific
methods (if
required)

 m/o

1. … (…) … x+ 0x…

2. … (…) … x + 0x…

In order for a client to access COSEM objects in the server, an application association must be
established. This will identify both partners and characterize the context within which associated
applications will communicate. Application associations are modelled by special COSEM objects.
For example, the server may grant different access rights to clients, some COSEM objects can or
can not be seen or have access to attributes and methods. The client can obtain the list of visible
COSEM objects by reading the object_list attribute of the appropriate association object.

BRIGHT will not have access to DSO’s collection system nor it will replace it and for this reason,
further detailed description of DLMS/COSEM is out of the scope of this document.
All additional descriptions of meter data and data presentation relevant to BRIGHT in the meter as
well interface to data will be described in chapter CIP.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 39(58)

4 APIs
Various APIs are needed to exchange the data between different services or other components in
the BRIGHT project. The APIs should cover not only high-level connection among services,
databases, visualization dashboards, query engines, etc. They should also cover APIs covering
communication on “low-level” transmitting raw data such as communication with SM. To
guarantee full interoperability, all the developed tools should use common APIs defined in this
section.

4.1 REST API

4.1.1 Introduction
REST is a set of architectural constraints that was created to guide the design and development of
the architecture for the World Wide Web. REST defines a set of constraints for how the
architecture of an Internet-scale distributed system should behave. The REST architectural fashion
emphasises the scalability of interactions between components, uniform interfaces, independent
deployment of components, and the creation of a layered architecture to facilitate caching
components to reduce user-perceived latency, enforce security, and encapsulate legacy systems.
REST has been employed throughout the software industry and is a widely accepted set of
instructions for creating stateless, reliable web APIs. A web API that obeys the REST constraints is
informally described as RESTful. RESTful web APIs are typically loosely based on HTTP methods to
access resources via URL-encoded parameters and the use of JSON or XML to transmit data. When
a client request is made via a RESTful API, it transfers a representation of the state of the resource
to the requester or endpoint. This information, or representation, is delivered in one of several
formats via HTTP: JSON, HTML, XLT, Python, PHP, or plain text. JSON is the most generally popular
file format to use because, despite its name, it’s language-agnostic, as well as readable by both
humans and machines.

4.1.2 Relevance to BRIGHT
In BRIGHT project most involved resources are actually being accessed through the REST API, since
it is the most common architecture employed by the majority of vendors/developers/systems.
Specifically, domX is using the REST API to define the format of the resources, as can be seen in
the following subsection in detail.

4.1.3 Implementation aspect
A brief example of the API developed and used by domX in order to interact with the smart

Heating Controllers that are deployed in the homes of individual users is described below.

In the first example, we demonstrate the GET command to acquire info regarding the available

devices. By issuing the command:

 GET: http://<domain>/api/v1/devices

We receive the response:

1[
2 {
3 "deviceid": "domx_ot_f4:ff:ff:ff:ff:ff",
4 "userid": 1,
5 "registeredat": "2020-11-03T14:38:56.075Z",
6 "latitude": "52.663158",
7 "longitude": "32.9477498",
8 "tags": null,

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 40(58)

9 "device_type": 1,
10 "device_name": "test home",
11 "region": "Thessaloniki, Greece",
12 "updatedat": "2020-11-03T14:38:56.075Z",
13 "boiler_make": "ARISTON",
14 "boiler_model": "CLAS ONE 30"
15 }
16

Apparently, a specified format is used to consolidate the requested data, including both the
parameters names as well as the requested values, thus the data can be visible both by a machine
and human.

In the second example we issue a GET command to retrieve data by a specific device:

 GET: http://<domain>/api/v1/devices/<deviceId>/data

While, the response of the above request is:

1{
2 "measurements": {
3 "heat": {
4 "name": "heat",
5 "data_type": "boolean"
6 },
7 "water": {
8 "name": "water",
9 "data_type": "boolean"
10 },
11 "fault": {
12 "name": "fault",
13 "data_type": "boolean"
14 }
15 },
16 "actions": {
17 "heat_set": {
18 "data_type": "boolean",
19 "action_type": "ot"
20 },
21 "water_set": {
22 "data_type": "boolean",
23 "action_type": "ot"
24 },
25 "t_set": {
26 "data_type": "float",
27 "action_type": "ot",
28 "min": 0,
29 "max": 100
30 },
31 "t_r_set": {
32 "data_type": "float",
33 "action_type": "ot",
34 "min": 16,
35 "max": 32
36 },
37 "t_dhw_set": {
38 "data_type": "float",
39 "action_type": "ot",
40 "min": 0,
41 "max": 100
42 },

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 41(58)

43 "otc_cur": {
44 "data_type": "float",
45 "action_type": "ot",
46 "min": 0,
47 "max": 10
48 },
49 "force_update": {
50 "data_type": "string",
51 "action_type": "device",
52 "values": [
53 "dev",
54 "staging",
55 "live"
56]
57 },
58 "devicereset": {
59 "data_type": "boolean",
60 "action_type": "device"
61 },
62 "factoryreset": {
63 "data_type": "boolean",
64 "action_type": "device"
65 },
66 "bypass": {
67 "data_type": "integer",
68 "action_type": "ot",
69 "min": 0,
70 "max": 2
71 }
72 }
73}

The retrieved data are separated into two main categories “measurements” and “actions”, with

each parameter being defined in terms of type and possible values/range.

4.2 Streaming API

4.2.1 Introduction
Data streaming, also known as Event Streaming or Stream Data Processing, is a term that identifies
the ability of a system to intercept multiple streams of data and perform a series of operations on
them. Compared to the 'traditional' way of managing data, this approach avoids asynchronous
processing (batch processing), thus avoiding the need to load data into special structures for
subsequent analysis. One of the most popular tools for working with streaming data is Apache
Kafka. Apache Kafka is a distributed data store optimized for ingesting and processing streaming
data in real-time. Kafka provides three main functions to its users:

1. To publish (write) and subscribe to (read) streams of events, including continuous
import/export of your data from other systems.

2. To store streams of events durably and reliably for as long as you want.
3. To process streams of events as they occur or retrospectively.

And all this functionality is provided in a distributed, highly scalable, elastic, fault-tolerant, and
secure manner.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 42(58)

4.2.2 Apache Kafka core concepts
The first thing that everyone who works with streaming applications should understand is the
concept of the event. An event records the fact that "something happened" in the world or in
your business. It is also called a record or message in the documentation. When you read or write
data to Kafka, you do this in the form of events. Conceptually, an event has a key, value,
timestamp, and optional metadata headers.

Events are constantly written by producers. Producers are those client applications that publish
(write) events to Kafka. Consumers are entities that use data (events). In other words, they can
receive data written by producers and use this data. In Kafka, producers and consumers are fully
decoupled and agnostic of each other, which is a key design element to achieve the high scalability
that Kafka is known for. For example, producers never need to wait for consumers. Kafka provides
various guarantees such as the ability to process events exactly-once. Kafka is the middleman
between applications that generate data and applications that consume data.

Events are organized and permanently stored in topics. A topic can be compared to a folder in a
filesystem, and the events are the files in that folder. Topics in Kafka are always multi-producer
and multi-subscriber: a topic can have zero, one, or many producers that write events to it, as well
as zero, one, or many consumers that subscribe to these events. Events in a topic can be read as
often as needed—unlike traditional messaging systems, events are not deleted after consumption.
Instead, you define for how long Kafka should retain your events through a per-topic configuration
setting, after which old events will be discarded.

Topics are partitioned, meaning a topic is spread over a number of "buckets" located on different
Kafka brokers. This distributed placement of your data is very important for scalability because it
allows client applications to both read and write the data from/to many brokers at the same time.
Figure 13 shows an example of a topic. In the example, the topic has four partitions, P1–P4. Two
different producer clients are publishing, independently from each other, new events to the topic
by writing events over the network to the topic's partitions. Events with the same key (denoted by
their color in the figure) are written to the same partition. Note that both producers can write to
the same partition if appropriate.

Figure 13. Topics and partitions in Kafka

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 43(58)

To make data fault-tolerant and highly-available, every topic can be replicated, even across geo-
regions or datacenters, so that there are always multiple brokers that have a copy of the data just
in case things go wrong, you want to do maintenance on the brokers, and so on. A common
production setting is a replication factor of 3, i.e., there will always be three copies of your data.
This replication is performed at the level of topic-partitions.

4.2.3 Relevance to BRIGHT
In BRIGHT Kafka will be used for the implementation of the Message queue system as part of the
interoperability layer. BRIGHT's architecture follows a microservices approach. One of the first big
considerations you’ll make when building up a microservice architecture is whether to have the
services communicate directly with one another or to use a broker system. Adopting the broker
model makes the system more flexible and resistant to failure, this is why we are using Kafka
inside BRIGHT. The goal of Apache Kafka is to solve the scaling and reliability issues that hold older
messaging queues back. A Kafka-centric microservice architecture uses an application setup where
BRIGHT’s tools communicate with each other using Kafka as an intermediary. This is achievable
thanks to Kafka’s publish-subscribe approach for handling record writing and reading. The publish-
subscribe model (pub-sub) is a communication strategy in which the sender sends events —
whenever events are available — and each receiver chooses which events to receive
asynchronously.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 44(58)

5 Protocols
5.1 MQTT

5.1.1 Introduction
MQTT is a publish-subscribe network protocol suitable for the Internet of Things (IoT). It is
designed to be lightweight with a small code footprint and minimal network bandwidth
requirements. It is ideal for connecting small remote devices on unreliable and low-bandwidth
connections to edge devices or datacenters. The protocol is usually implemented on top of a
TCP/IP network stack, but can run on any network protocol that provides ordered, lossless and bi-
directional communication.

5.1.2 MQTT core concepts
Using MQTT protocol two types of network entities are defined in a MQTT protocol standard:

 MQTT broker

 MQTT client

Figure 14. Example of MQTT network.

MQTT broker is a server that receives all messages from the MQTT clients (publishers) and
forwards them to the subscribed MQTT clients (subscribers). Information that flows through the
MQTT broker is hierarchically organized into topics. Each MQTT client that connects to the MQTT
broker can subscribe to one or more MQTT topics. When new data is published on a particular
topic, the MQTT broker distributes the data to all subscribed MQTT clients. If there is no
subscribed MQTT client for a particular topic, the MQTT broker discards the published data.

MQTT client is any device that runs MQTT protocol and can connect to a MQTT broker. MQTT
client code footprint is very small and can be implemented on small embedded devices with
limited processing and memory resources. Many implementations of MQTT client protocol can be
found (also many device-specific implementations) that are implemented for different platforms

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 45(58)

and in many programming languages. A device-specific implementation can be found for Arduino
devices, ESP32 devices, mbed devices and many more [24]. Some of the popular implementations
that run on many POSIX and Windows devices are for example Eclipse Paho C [25] and
libmosquitto [26].

MQTT protocol also specifies quality of service (QoS) measure, where for each connection
between a MQTT client and a MQTT broker a level of QoS can be specified. Three QoS settings are
specified and they differ in the amount of communication overhead they impose according to the
setting:

 Level 0: at most once – the message is sent only once without the delivery acknowledge
(fire and forget).

 Level 1: at least once – the message is being retransmitted multiple times until receive
acknowledge is received (acknowledged delivery).

 Level 2: Exactly once – the sender and receiver use a two-level handshake to ensure only
one copy of the message is received (assured delivery).

5.1.3 MQTT security
Most of MQTT protocol implementations use plain TCP/IP transport, where all communication
content can be accessed by any participant alongside the chain of devices between the sender and
the receiver. Any agent alongside the communication chain can read the content of the TCP
packet and can even modify it.

To provide a secure communication channel between the MQTT client and MQTT broker, MQTT
protocol uses Transport Layer Security (TLS). TLS ensures the content of sent messages can not be
read or altered by any third party device or agent.

MQTT protocol uses username and password as a client authentication mechanism to establish a
secure encrypted connection. MQTT broker provides a server X.509 certificate, which should be
issued by a trusted authority, and is used by the client to verify the identity of the server. In
addition to username and password, client identification can be extended by using unique device
identifiers (e.g. Universal Unique Identifier - UUID) or client X.509 certificates. The client presents
the client certificate to the broker during the TLS handshake.

5.1.4 Relevance to BRIGHT
Inside the BRIGHT pilots, MQTT will be the main communication interface for many deployed
devices for collecting measurements and also for controlling the connected end devices. Many of
those devices are connected to the cloud and management systems using low bandwidth IoT
connections and mobile internet connections, where low data usage is of great importance. MQTT
will also provide a secure and standardized communication interface for all connected devices
using MQTT to the BRIGHT interoperability layer.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 46(58)

5.2 CIP (I1)

5.2.1 Introduction
I1 interface of a smart meter is used as Consumer Information Push (CIP) local port. It is a
unidirectional port (from meter to consumer) and provides relevant metering data to the
consumer such as (but not limited to): active, reactive, apparent power and energy used (current
and average), voltages, currents, load profiles, demand power, water-, gas-, heating- energy
registers, etc.

CIP protocol stack can be either HDLC based or IP based protocol stack with physical
characteristics defined in companion standard used in Dutch Smart Meter Requirements [27].

Smart meters in Pilot 2 will use an HDLC-based protocol stack with a predefined set of data to
transmit to the consumer. For the purposes of GDPR, CIP data can be encrypted. This set of data
will be defined at a later stage of the project.

The physical connector is type RJ12; the metering device holds a female connector. Pin assignment
of P1 interface is shown in the following table

Table 6. Pin assignment on P1 connector

Pin # Signal Description Note

1 +5V Power supply Not available in older versions (max 250 mA)

2 DR Data request Input (active high)

3 DGND Data ground

4 NC Not connected

5 Data Data line Output (open collector)

6 PGND Power ground

All signals are galvanically isolated from the mains.

Figure 15 shows the RJ12 male plug and position of the first pin, and Figure 16 shows the
functional block diagram of the P1 connector.

Figure 15. P1 connector on RJ12 male plug.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 47(58)

Figure 16. Functional block diagram of P1 connector.

Smart meters used in BRIGHT will use CIP protocol stack set to HDLC, frame type 3 and the non-
basic frame format transparency according to IEC 13239, sec- 4.3.3. Encoding is ASN.1

Sensitive user information transmitted from the meter will be secured (encrypted and secured).
Security material used in the process is independent of security material used in smart meter –
DSO communication.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 48(58)

6 Conclusions

This deliverable introduces and defines the data interoperability layer and specifies requirements
the BRIGHT service should follow. An overview of the most relevant interoperability concepts for
the BRIGHT system is presented and discussed. The concept of data models and ontologies are
introduced and placed in a broader sense of the BRIGHT project. A list of identified and
harmonized data objects is presented that will be used and adapted to the data models and
ontologies used by BRIGHT consortium. This will lead to the creation of BRIGHT specific ontology,
created by using and extending existing ontologies. This will enable the semantic adaptation inside
the BRIGHT interoperability layer and the service and data interoperability inside the BRIGHT
project.

In the second part of the document, existing data exchange systems and ontologies (SAREF, S2,
DLMS/COSEM) that are going to be used inside the BRIGHT project are presented and discussed,
followed by the presentation of the APIs used inside the BRIGHT project (REST API, Apache Kafka
streaming API). The Apache Kafka will act as a basis for scalable and secure communications inside
the BRIGHT framework by means of providing high-performance data pipelines, data integration,
semantic adaptation, and access to heterogeneous data sources. Finally, communication protocols
for data collection are presented like publish-subscribe protocol MQTT and CIP protocol for
collecting data from smart meters.

For the next steps, the harmonized inputs of the complete architecture as defined in D2.3 will be
used to align the interoperability architecture with BRIGHT architecture. Moreover, from WP3 the
data objects that need to be additionally modeled or modified will be identified. This will enable to
incorporate the indirect input from citizens obtained with various social engagement strategies as
defined in WP3. Finally, the D4.1 input gives us the first feedback on which technologies are
feasible for incorporating them in the BRIGHT interoperability layer, thus creating the final
architecture of the interoperability layer. This along with the BRIGHT specific ontology will be
reported in the next version of this deliverable (D2.5) scheduled for M19.

The output of this deliverable and the one following is giving the requirements that need to be
followed by technical WPs for addressing interoperability issues when creating new solutions.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 49(58)

References
[1] Laney D. 3D Data Management: Controlling Data Volume, Velocity, and Variety. META Group

Research Note 2001.
[2] Niculescu V. On the Impact of High Performance Computing in Big Data Analytics for Medicine.

Applied Medical Informatics 2020;42:9–18.
[3] Spyns P, Meersman R, Jarrar M. Data modelling versus ontology engineering. SIGMOD Rec

2002;31:12–7. https://doi.org/10.1145/637411.637413.
[4] Sung-Kook H. Towards Semantic oriented Database - ppt download n.d.

https://slideplayer.com/slide/14432021/ (accessed September 10, 2021).
[5] soa 2021. https://www.ibm.com/cloud/learn/soa (accessed September 10, 2021).
[6] Mats’ela M. Microservices Architecture vs. Service Oriented Architecture. Mualle Mats’ela

2019. https://mualle.net/microservices-architecture-vs-service-oriented-architecture/
(accessed September 10, 2021).

[7] Microservices vs SOA: What’s the Difference? Tiempo Development 2020.
https://www.tiempodev.com/blog/microservices-vs-soa/ (accessed September 10, 2021).

[8] Enterprise service bus. Wikipedia 2021.
[9] Delgado J. Service Interoperability in the Internet of Things. In: Bessis N, Xhafa F, Varvarigou D,

Hill R, Li M, editors. Internet of Things and Inter-cooperative Computational Technologies for
Collective Intelligence, Berlin, Heidelberg: Springer; 2013, p. 51–87.
https://doi.org/10.1007/978-3-642-34952-2_3.

[10] Lewis GA, Morris E, Simanta S, Wrage L. Why Standards Are Not Enough to Guarantee End-
to-End Interoperability. Seventh International Conference on Composition-Based Software
Systems (ICCBSS 2008), 2008, p. 164–73. https://doi.org/10.1109/ICCBSS.2008.25.

[11] Noura M, Atiquzzaman M, Gaedke M. Interoperability in Internet of Things: Taxonomies
and Open Challenges. Mobile Netw Appl 2019;24:796–809. https://doi.org/10.1007/s11036-
018-1089-9.

[12] Marcos E, Marcos A. A Philosophical Approach to the Concept of Data Model: Is a Data
Model, in Fact, a Model? Information Systems Frontiers 2001;3:267–74.
https://doi.org/10.1023/A:1011460711754.

[13] Taylor D. Data Modelling: Conceptual, Logical, Physical Data Model Types n.d.
https://www.guru99.com/data-modelling-conceptual-logical.html (accessed September 13,
2021).

[14] Technologies M. Data Modeling Examples | What is Data Modeling 2021. Mindmajix 2021.
https://mindmajix.com/data-modeling-examples (accessed September 13, 2021).

[15] What is Relational Data Model? Characteristics, Diagram, Constraints, Advanatges &
Disadvantages. Binary Terms 2019. https://binaryterms.com/relational-data-model.html
(accessed September 13, 2021).

[16] ETSI TS 103 264 n.d.
https://www.etsi.org/deliver/etsi_ts/103200_103299/103264/02.01.01_60/ts_103264v02010
1p.pdf (accessed March 1, 2017).

[17] Energy@home - Home n.d. http://www.energy-home.it/SitePages/Home.aspx (accessed
October 18, 2021).

[18] kennzeichen. EEBUS | Make the world speak energy. EEBus Initiative eV n.d.
https://www.eebus.org/ (accessed September 23, 2020).

[19] DSF/PREN 50491-12 - General requirements for Home and Building Electronic Systems
(HBES) and Building Automation and Control Systems (BACS) - Part 12: Smart grid - Application
specification - Interface and framework for customer | Joinup n.d.

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 50(58)

https://joinup.ec.europa.eu/collection/ict-standards-procurement/solution/dsfpren-50491-
12-general-requirements-home-and-building-electronic-systems-hbes-and-building (accessed
October 19, 2021).

[20] DLMS: Device Language Message Specification | dlms n.d. https://www.dlms.com/
(accessed September 30, 2021).

[21] IEC 62056-5-3:2017 | IEC Webstore | cyber security, smart city n.d.
https://webstore.iec.ch/publication/27065 (accessed September 30, 2021).

[22] IEC 62056-6-2:2017 | IEC Webstore n.d. https://webstore.iec.ch/publication/34317
(accessed September 30, 2021).

[23] IEC 62056-6-1:2017 | IEC Webstore n.d. https://webstore.iec.ch/publication/32782
(accessed September 30, 2021).

[24] Software n.d. https://mqtt.org/software/ (accessed October 21, 2021).
[25] Craggs I. Eclipse Paho | The Eclipse Foundation n.d.

https://www.eclipse.org/paho/index.php?page=clients/c/index.php (accessed October 21,
2021).

[26] Eclipse Mosquitto. Eclipse Mosquitto 2018. https://mosquitto.org/ (accessed October 21,
2021).

[27] P1 Companion Standard 2021.
https://www.netbeheernederland.nl/_upload/Files/Slimme_meter_15_a727fce1f1.pdf
(accessed September 10, 2021).

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 51(58)

7 Annex 1
7.1 Data template Pilot 1

Location: Belgium
Owner: DuCoop, Participating partners: IMEC, CEN

Information
object

Attributes Granula
rity

Communication
frequency
(range)

Communication
protocol

Data sharing

format

Nature of
data

Comments

Smart
meter

Voltage (1 and 3 phase),
Current (1 and 3 phase),
consumption (2 tariffs),
injection (2 tariffs), ID,
Timestamp

3 min 5-10 sec NEN-EN-IEC
62056-21

JSON Sensitive Electricity

Energy
meter

Current, frequency,
power, voltage,
Consumed Energy (day,
night and total),
Timestamp

5 min < 5 sec

MBUS, PROFINET,
ModbusTCP

JSON Sensitive

Electricity

Energy
meter

Consumed energy,
Timestamp

5 min 5 min

MBUS JSON Sensitive

Heat

Generation Power, voltage (3
phases), current (3
phases), frequency, total
yield, grid power,
Timestamp

5 min 1 min HTTPS REST API being
developed
(JSON)

Open

PV, 5 installations,
total of approx. 90
kWp

Storage Timestamp, SoC,
(dis)charging power,
operational state

1 min 1 min MQTT REST API being
developed
(JSON)

Open

Battery storage,
240 kWh

EV charging Total charging power (3 1 min 1 min Modbus REST API being Open

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 52(58)

stations phases), total current (3
phases), total voltage (3
phases),
Timestamp

developed
(JSON)

Generation Operational state,
generated thermal
power, Timestamp

1 min 1 min Modbus REST API being
developed
(JSON)

Open

Heat pump with
three
compression
stages (20, 40, 60
kW)

Load Consumed power,
Timestamp

1 min 1 min Modbus REST API being
developed
(JSON)

Open Heat pump with

three

compression

stages (20, 40, 60

kW)

Weather Date, Time,
Temperature,
Precipitation, Humidity,
wind direction, wind
speed, Solar radiation,
UV index

1 min 1 min ModbusTCP REST API being
developed
(JSON)

Open On-site weather
station

Private
living units

Temperature rooms,

temperature set point

rooms, district heating

temperature, district

heating return

temperature, district

heating flow, tapping

temperature

5 sec 1 min HTTP, REST API REST API being
developed
(JSON)

Sensitive

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 53(58)

7.2 Data template Pilot 2

Location: Slovenia
Owner: SUN, Participating partners: ISKRA, COM

Information
object

Atributes Granularity Communication
frequency (range)

Communication
protocol

Data sharing

format

Nature of data Comments

Smart meter Voltage,
Active power,
Current,
1 & 3 phase,
ID,
Timestamp

15 min On demand HTTP JSON Sensitive

Energy meter Input
Temperature,
output
Temperature,
Energy,
Active power
Timestamp

1 s On demand HTTP JSON Sensitive Heating and
district
heating

Generation energy
power,
ID,
Timestamp

15 min On demand HTTP JSON Sensitive PV

Storage temperature,
Min. Temp.,
Max. Temp.,
Volume
Timestamp,
ID

1s, 15 min On demand HTTP JSON Sensitive Heat storage

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 54(58)

EV charging
station

station ID,
Voltage,
Current,
Real-time
power,
Price,
Timestamp

tbd tbd tbd tbd Sensitive Under
construction
not yet
integrated in
the system

Load Voltage,
Active power,
Current,
3-phase,
ID,
Timestamp

15 min On demand HTTP JSON Sensitive Complete
building
consumption

Weather Date, Time,
Temperature,
Precipitation,
Solar
radiation

tbd tbd Tbd Tbd tbd

Calendar Working
days,
Weekend,
Public
holidays and
bank holidays

Property and
measurements

ID,
Timestamp,
Unit, Value

15 min On demand HTTP JSON Sensitive Rooms and
corridors
temperature,
humidity, C02

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 55(58)

7.3 Data template Pilot 3

Location: Italy
Owner: ASM, Participating partners: ENG, EMOT, COM

Information
object

Attributes Granularity Communication
frequency (range)

Communication
protocol

Data sharing

format

Nature of data Comments

Smart meter Voltage,
Active power,
Current,
One phase,
ID,
Timestamp,
Consumed
Energy,
Timestamp

5 seconds 5 seconds MQTT CSV Proprietary The smart
meter are
related to the
customers/pr
osumers
scattered in
the city of
Terni.

Generation ID,
Measuremen
t unit,
Timestamp,
Generated
active energy

5 seconds 5 seconds MQTT CSV Proprietary PV of 185

kWp.

Storage Timestamp,
SoC

5 seconds 5 seconds MQTT CSV Proprietary Type of
storage, e.g.
battery

EV EV ID,
Timestamp,
SoC

2 seconds 2 seconds MQTT JSON (real-time
data), CSV

(historical data)

Proprietary

EV charging
station

Charging
station ID,
Socket ID,

1 second 1 second MQTT JSON (real-time
data), CSV

(historical data)

Proprietary

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 56(58)

Nominal max
power,
Nominal min
power,
Real-time
power,
Timestamp

BEMS (Building
Energy
Management
System)

Zones
temperature,
humidity
levels,
technical
setpoiints,
timestamp

15 min 15 min MQQT CSV Proprietary The main
loads of ASM
district are
managed by
BEMS (HVAC,
lighting
system)

Weather Date, Time,
Temperature,
Precipitation,
Solar
radiation

Daily Monthly Web site CSV Open Umbria
region web
site

Calendar Working
days,
Weekend,
Public
holidays and
bank holidays

7.4 Data template Pilot 4

Location: Greece
Owner: WVT, Participating partners: DOMX

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 57(58)

Information
object

Atributes Granularit
y

Communication
frequency (range)

Communic
ation
protocol

Data sharing

format

Nature of data Comments

Smart meter Voltage, Active power,
Current,
One phase,
ID, Timestamp

15 min On demand/next
day

JSON, CSV XLSX, CSV, JSON Sensitive/Proprie
tary

Energy meter Consumed Energy,
Timestamp

15 min

On demand/next
day

JSON, CSV

XLSX, CSV, JSON Sensitive/Proprie
tary

Load Consumed electric
energy,
Timestamp

15 min

On demand/next
day

JSON, CSV

XLSX, CSV, JSON

Sensitive/Proprie
tary

Smart Heating
Controller
(domX)

Indoor/outdoor
temperature, Space
heating temperature
setpoint, Domestic hot
water temperature
Setpoint, Boiler water
temperature, DHW
temperature, Heating
usage, Hot water
usage, Boiler
modulation, Gas
consumptio,
Timestamp

1-5 min On demand HTTPS JSON Sensitive Most
attributes are
provided
every minute
apart from
the
consumption
data that are
provided
every 5’

Energy meter
(domX)

Active Power, Voltage,
Consumed Energy,
Reactive Power, Power
Factor,
Timestamp

30 sec - 5
min

On demand HTTPS JSON Sensitive Most
attributes are
provided
every 30’’
apart from

BRIGHT D2.4 – Cross-domain Data & Service Interoperability

BRIGHT 58(58)

the Energy
Consumption
that is
provided
every 5’

