

The project Boosting DR through increased communIty-level consumer engaGement by combining Data-driven and blockcHain technology Tools
with social science approaches and multi-value service design (BRIGHT) has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 957816. The sole responsibility for the content of this publication lies with the authors. It does
not necessarily reflect the opinion of the Innovation and Networks Executive Agency (INEA) or the European Commission (EC). INEA or the EC are
not responsible for any use that may be made of the information contained therein.

The BRIGHT project is co-founded by the EU’s Horizon 2020 innovation
programme under grant agreement No 957816

Boosting DR through increased communIty -level consumer engaGement by combining Data -driven
and blockcHain technology Tools with social science approaches and multi -value service design

Deliverable D2.3 DR Technologies and Tools

Author(s): Denisa Ziu (ENG), Andrea Lazzeri (ENG), Vincenzo Croce(ENG)

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 2(72)

Imprint

Title: DR Technologies and Tools
Contractual Date of Delivery to the EC: 31.10.2021
Actual Date of Delivery to the EC: 31.10.2021
Author(s): Denisa Ziu (ENG), Andrea Lazzeri (ENG), Vincenzo Croce (ENG)
Participant(s): ENG, TUC, IMEC, DOMX, COM, CEL
Project: Boosting DR through increased communIty-level consumer engaGement

by combining Data-driven and blockcHain technology Tools with social
science approaches and multi-value service design (BRIGHT)

Work Package: WP2 – BRIGHT Technology and Novel Multi-Value Service Design
Task: T2.2 – Functional Specification & Technology/Tools Design
Confidentiality: Public
Version: 1.0

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 3(72)

Table of Contents

Table of Contents ... 3

List of Figures ... 4

List of Tables ... 5

List of Acronyms and Abbreviations .. 6

Executive Summary .. 7

1 Introduction ... 8

1.1 Purpose .. 8

1.2 Relation to Other Activities ... 8

1.3 Structure of the Document ... 8

2 BRIGHT Software requirements specification ... 9

2.1 Methodology ... 9

2.1.1 IEEE guidelines for business and user requirements ... 9

2.1.2 Agile Requirements Modeling.. 10

2.1.3 Reactive Manifesto .. 12

2.2 High-Level Requirements .. 14

2.2.1 Community and Customer Digital Twin Models (WP4) ... 14

2.2.2 Digital-Twin enabled Flexibility and information valorisation (WP5) 26

2.2.3 DLT Enablers for Decentralized VPP (WP6) ... 35

3 BRIGHT Technologies specifications .. 47

3.1 Actors ... 47

3.2 Datasets ... 52

3.3 Architecture Overview .. 55

3.3.1 Architectural diagram .. 55

3.3.2 Dynamic view ... 57

3.3.3 Technologies .. 61

3.3.4 Cyber security and data privacy ... 64

4 Conclusions .. 66

References.. 67

Annex 1 – Software Requirements Specification Templates ... 68

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 4(72)

List of Figures
Figure 1 Functional requirements examples (from ISO/IEC/IEEE 29148:2018) 10

Figure 2 Agile Model Driven Development Lifecycle ... 11

Figure 3 Example of Agile Board with Trello .. 12

Figure 4 Multi-purpose clustering framework for thermal loads and assets (TLC) Technology Stack
 .. 20

Figure 5 Dynamic simulator for modelling thermal loads and assets (SLC) Technology Stack 22

Figure 6 Energy Forecasting Tool Technology Stack .. 24

Figure 7 Smartphone application screen for setting personalized preferences 32

Figure 8 Device types considered by the Integrated energy and non-energy Smart home service
Manager (ISM) ... 33

Figure 9 Cross Sector Services Flexibility Optimization Tool Technology Stack 35

Figure 10 Technology Stack - DLT Enablers for Decentralized VPP ... 41

Figure 11 User dashboard for monitoring/controlling the Interoperable Gateway for Home
Automation (IHG) ... 45

Figure 12 Interoperable Gateway for Home Automation (IHG) Technology Stack 46

Figure 13 The Smart Grid Architecture Model ... 48

Figure 14 Conceptual BRIGHT's Architecture .. 56

Figure 15 Sequence diagram for tools developed in WP4 and WP5 ... 58

Figure 16 Information flow between tools developed in WP6 and the forecasting tool developed as
part of WP4 .. 60

https://engit.sharepoint.com/sites/BRIGHTH2020/Documenti%20condivisi/WP2/T2.2/BRIGHT_D2.3_V1.0_ENG.docx#_Toc86415371
https://engit.sharepoint.com/sites/BRIGHTH2020/Documenti%20condivisi/WP2/T2.2/BRIGHT_D2.3_V1.0_ENG.docx#_Toc86415372

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 5(72)

List of Tables
Table 1 List of Acronyms and Abbreviations .. 6

Table 2 List of identified BRIGHT actors... 48

Table 3 Relations among actors of the system .. 52

Table 4 Identified datasets of BRIGHT system ... 53

Table 5 List of guidelines for cybersecurity aspects .. 64

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 6(72)

List of Acronyms and Abbreviations

Table 1 List of Acronyms and Abbreviations

BRIGHT Boosting DR through increased communIty-level consumer engaGement by
combining Data-driven and blockcHain technology Tools with social science
approaches and multi-value service design

DLT Distributed Ledger Technology

DR Demand-Response

GUI Graphical User Interface

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

JIT Just In Time

JTC Joint Technical Committee

MAPE Mean Absolute Percentage Error

ML Machine Learning

MQTT Message Queue Telemetry Transport

SGAM Smart Grid Architecture Model

SRS Software Requirements Specification

TDD Test-Driven Development

VPP Virtual Power Plant

WP Work Package

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 7(72)

Executive Summary
This document is part of the deliverables of the BRIGHT project, in the context of Work Package 2
(WP2) “BRIGHT Technology and Novel Multi-Value Service Design”. Specifically, it presents the
design of the DR technologies to be used in BRIGHT in terms of technical and functional
specifications of the project’s ICT components with an in-depth definition of the new tools and
functionalities that will be developed in the technical WPs.
As a first step the methodology for the definition and the development of BRIGHT Software
Requirements Specification (SRS) is presented. The requirements of the tools to be developed in
BRIGHT have been built following the guidelines of the ISO/IEC/IEEE 29148:2018 standard. As only
one version of this document exists, an agile approach, supported by online tools like Trello, will
be taken into account for the refinement of the requirements. Furthermore, as the computational
complexity of the BRIGHT techniques and algorithms can be non-trivial, special attention has been
paid to the technologies that follow the principles of the Reactive Manifesto, namely being
Responsive, Resilient, Elastic and Non-Blocking, to guarantee scalable performance.
Subsequently, the high-level software requirements for each technical WP are presented. For each
group of components, an assets section describes the scope and overview of the set of tools
developed in the WP as a whole, and a Tools section, which describes the functional and non-
functional requirements, the technology stack, and the validation process for each of the specific
tools that will be developed.
As a final step, the actors, the design of the overall architecture of the BRIGHT ecosystem, the
interactions between the tools, and the technological aspects are presented. Particular attention
is given to the interoperability layer, essential for a common way of communication between the
tools. Scalability, flexibility, reliability, and high performance are the key characteristics taken into
consideration for the technologies adopted in BRIGHT project.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 8(72)

1 Introduction
1.1 Purpose
This document (D2.3 DR technologies and tools) reports the results of the activities performed in
Task 2.2 Functional Specification & Technology/Tools Design. The task aims to define the technical
and functional specifications of BRIGHT technology and tools that will be developed in WP4, WP5,
and WP6. To this purpose two templates have been sent to the partners for the collection of
technical information. The information retrieved follows the construct, attributes, and
characteristics structure defined by the IEEE guidelines (ISO/IEC/IEEE 29148:2018 standard).
Another outcome of this deliverable is the design of BRIGHT's high-level architecture and how all
its components are organized and interact with each other. Before providing the architecture
model, the actors of the system and the datasets will be reported.

1.2 Relation to Other Activities
Task 2.2 provides functional specification and technology/tools design for the BRIGHT project. The
output of deliverable D2.3 is the complete set of technologies/tools requirements specification of
BRIGHT’s ICT components. This output differs from that of T2.4, contained in D2.2, which instead
focused on non-functional requirements, spefically those related to privacy, cybersecurity, ethics,
and legal dimensions. Ultimately, outputs of T2.2 and T2.4 should be considered as
complimentary.

The output of this deliverable is particularly relevant for WP4, WP5, WP6 that represent the
BRIGHT tools and services development. The list of functional and non functional requirements is
also important for WP7 for the validation of the defined BRIGHT’s tools in the pilots.

1.3 Structure of the Document
Deliverable D2.3 is structured as follows:

 Chapter 1: Introduction to the objective of the document and its structure.

 Chapter 2: Methodology used for the definition of the BRIGHT software requirements
specification. Agile approach model and reactive systems are the key concepts for the
development of BRIGHT technology. Requirements such as functional requirements,
performance requirements, interface requirements, design constraints, software system
attributes, technology stack and validation process identified for each tool.

 Chapter 3: Description of the architecture model, actors, datasets, technology aspects for
the realization of the BRIGHT system.

 Chapter 4: Document conclusions.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 9(72)

2 BRIGHT Software requirements specification

2.1 Methodology

2.1.1 IEEE guidelines for business and user requirements
The International Organisation for Standardization (ISO) and the International Electrotechnical
Commission (IEC) work together in technical commitees for the development of international
standards in fields of mutual interest, together with other international organisations and
governamental bodies. The ISO/IEC Joint Technical Committee (JTC) 1 is a joint technical
committee in the field of information technology.
The ISO/IEC/IEEE 29148:2018 is the second edition of the ISO/IEC/IEEE 29148:2011 standard,
prepared by ISO/IEC JTC 1 in cooperation with the Systems and Software Engineering Standards
Committee of the IEEE Computer Society.
The document specifies the required processes implemented in requirements engineering for
systems and software through their lifecycle, provides guidelines for applying the related
processes, and specifies the required information items and their contents for the implementation
of the processes. The standard is meant for anyone performing requirements engineering
activities related to software and hardware products and related services and can be applied
regardless of the project scope, size, and complexity.

According to the standard, the primary result of the requirements engineering process is a set of
requirements:

 With reference to a defined software

 Enabling understanding between stakeholders

 Validated against real-world needs

 Able to be implemented

 Providing a reference for verification.

The requirements definition begins with stakeholder needs. Initial stakeholder needs may lack
definition, consistency, and feasibility so they are refined to obtain valid requirements and the
same process is also applied recursively to lower levels of the system structure.

Well-formed requirements contribute to the process of their validation and ensure that
stakeholders’ needs are accurately captured. A well-formed requirement should:

 be met or possessed by a system to address a stakeholder concern

 be measurable

 be bounded by constraints

 define the performance of the system, but not a capability of the user

 be verifiable

If expressed in the form of a natural language, the requirement should include a subject and a
verb, state the subject of the requirement, what shall be done, or a constraint on the system.
Figure 1 shows some requirements examples.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 10(72)

Figure 1 Functional requirements examples (from ISO/IEC/IEEE 29148:2018)

The standard also suggests some best practices on the specific keywords and terms to be used, as
follows:

 Requirements are mandatory binding provisions and use ‘shall’

 Non-requirements use verbs such as ‘are’, ‘is’, and ‘was’. Avoid the term ‘must’, due to
potential misinterpretation

 ‘Will’ is used in non-mandatory, non-binding provisions or to establish context or
limitations

 Desired, non-mandatory, non-binding provisions use ‘should’

 Suggestions or allowances use ‘may’

 Avoid negative requirements, such as ‘shall not’

 Avoid using passive voice, such as ’it is required that’

 Avoid using terms such as ‘shall be able to’

It is important to agree in advance on all terms specific to requirements and apply them
consistently.

Interfaces to existing systems, pre-existing technologies, physical limitations, laws, budget, and
additional limitations that restrict the design or the implementation of the solution are indicated
as contraints.

Finally, requirements should be ranked to indicate priority.

In BRIGHT, the ISO/IEC/IEEE 29148:2018 standard has been used for the definition of the software
requirements specification. Specifically, two templates have been prepared and sent to the
technical partners for the collection of BRIGHT's tools requirements. Templates are related to each
technical WP and consist of:

 Assets SRS Template: to define the scope and overview of the set of tools developed in the
WP as a whole.

 Tools SRS Template: to define the functional and non functional requirements for each of
the specific tools to be developed.

The templates specification can be found in the Annex of this document.

2.1.2 Agile Requirements Modeling
Agile software development describes an iterative approach in which work is delivered in small
increments to be able to respond to changes quickly. Due to its iterative nature, Agile works best

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 11(72)

for innovative projects and when working in an industry that changes quickly and, for this reason,
requirements, plans, and results are evaluated continuously allowing the teams to respond to
early feedback instead of relying on extensive upfront planning.

A common practice is to identify early in the project some high-level system requirements to help
defining the scope of the project, identify business goals, and develop a common vision. Such
requirements will be refined periodically as the project progressess, benefiting from the increased
level of knowledge achieved in later stages of the project and exploiting additional information not
available at the beginning of the activity.

Agile Model Driven Development (Figure 2) includes an initial effort for requirements envisioning
during the initial phase of the project, often called “Iteration 0”.

Figure 2 Agile Model Driven Development Lifecycle

The goal of this initial activity is not to create a detailed specification of requirements upfront like
a traditional project but, instead, to identify the high-level scope, the initial requirements stack,
and the architectural vision.

Actual modeling is part of each iteration effort and helps planning the work for the iteration. Each
incremental steps focuses on specific issues following a Just In Time (JIT) approach and the active
participation of stakeholders is encouraged. Modelling focuses only on what is needed at the time
of each iteration, allowing requirements to evolve during the project lifecycle and, in some cases
such as in Test Driven Development (TDD), capturing them in the form of operative specifications
[1].

While agile encourages the usage of physical tools like boards and backlogs, a number of different
online tools (Figure 3) allow to manage projects following agile methodologies even when the
usage of physical tools is unpractical due to the team size or its distribution in different
geographical areas.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 12(72)

Figure 3 Example of Agile Board with Trello

Another advantage of using online tools is that a single product can be used to bundle the
capabilities of different tools such as agile boards, backlogs, roadmaps and reports and can usually
be integrated with existing services that help track and manage activities.

A very popular visual work management tool is Trello [2]. Trello is a collaborative work
management app designed to track team projects, highlight tasks underway, show who they are
assigned to, and detail progress towards completion. Trello relies on the principles of Kanban
project boards to visualize workflows, providing managers and team members with a simple
overview of a project from start to finish. Trello main components are boards, lists, and cards. A
board represents a place to keep track of information — often for large projects, teams, or
workflows. Within each board, several lists can be created to indicate the progress of a project;
“to do,” “in progress,” and “done” lists are common examples. Individual cards within the lists
hold information on a specific task and can be moved from list to list as needed (such as when a
task is completed).
Trello will be used in BRIGHT to track the refinement of requirements. This document contains the
first version of BRIGHT 's requirements. During the project, the requirements will be reviewed and
changed as necessary following an agile approach.

2.1.3 Reactive Manifesto
In the last years, software application requirements have changed dramatically. The impact of
cloud technology on IT increased demand for speed, flexibility, and innovation and the
globalization of the market economy puts new pressures to increase speed and lower costs.
Workforce automation is changing how businesses think about IT operations, monitoring, and
management and new services built-on-the-web and app-enabled may be used to bring disruptive
products on the market in a fraction of the time it would take a traditional system to respond [3].

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 13(72)

In such a scenario, yesterday’s software architectures are unable to met today’s demands and, for
this reason, the authors of the Reactive Manifesto [4] defined the concept of reactive systems,
systems designed to be responsive, resilient, elastic, and message driven to be more failure
tolerant, highly responsive, flexible, loosely-coupled, easy to develop and maintain, and scalable.
The architecture of a reactive system enables multiple microservices to work as a single unit,
providing greater elesticity under changing workloads and resiliency in case of failure.

Following the above definition, reactive systems are:

 Responsive: able to respond rapidly and consistently.

 Resilient: remaining responsive in case of failure. This can be achieved thanks to
replication, containment, isolation, and delegation.

 Elastic: remaining responsive under changing workload, thanks to live performance
measures, scaling algorithms, and avoiding bottlenecks.

 Message Driven: relying on asynchronous messages queues. Non blocking communication
reduces system overhead allowing recipients to consume resources only when active.

Implementing reactive systems using Apache Kafka
Apache Kafka can be considered the de-facto asynchronous messaging technology for reactive
systems. Kafka is an open-source, distributed streaming platform to handle streams of events,
able to work in a reactive and highly responsive manner.
While Kafka alone already offers built-in resiliency and scalability, it is required to configure the
system appropriately and to consider how applications integrate with Kafka through producers
and consumers for achieving full reactivity [5].
Reactive systems achieve loose-coupling and isolation establishing boundary between
components thanks to non-blocking asynchronous messages. Kafka enables the asynchronous
message-passing that makes up the backbone of a reactive system. By configuring Kafka
specifically for resilience and elasticity, applications may be responsive to events and therefore
reactive.
Kafka already uses a combination of multiple distributed brokers and replicates records between
them. To achieve end-to-end resiliency of records, it is possible to configure acknowledgements,
retry policies, and offset commit strategies.
Kafka already provides a certain degree of scalability, allowing brokers and partitions to be scaled
out creating a system elastic enough to deal with fluctuating load. When developing elastic
producer applications it is important to scale producers so that they don’t produce duplicate
messages.
It is also possible to scale consumer applications to collaborate using consumer groups: in this
way, each consumer in the group receives a subset of the records on a specific topic.

In BRIGHT Kafka will be used for the implementation of the Message Queue system as part of the
interoperability layer. BRIGHT’s tools communicate with each other using Kafka as an
intermediary. This is achievable thanks to Kafka’s publish-subscribe approach for handling record
writing and reading. The publish-subscribe model (pub-sub) is a communication strategy in which
the sender sends events — whenever events are available — and each receiver chooses which
events to receive asynchronously.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 14(72)

2.2 High-Level Requirements

2.2.1 Community and Customer Digital Twin Models (WP4)

2.2.1.1 Assets

Scope

Name Community and Customer Digital Twin Models

Description The tools enable collection and process of the data from the
pilot sites. The modelled data is subsequentialy used by
Machine Learning (ML) techniques and algorithms in order to
predict both production and consumption of energy by
customers, communities, etc.
The tools are the following:

Multi-purpose clustering tool for thermal loads and assets
The tool enables the automated clustering in household
heating scenarios to identify consumers/buildings/heating
systems characterized by similar behaviour/performance.

Dynamic simulator for modelling thermal loads and assets
The tool enables the automated performance simulation of
thermal assets for household heating scenarios, by generating
the digital twin representation of their core components
(heating system, building, occupants).

Energy Forecasting Tool
The tool allows the users to:

 visualize historical energy data on consumption or
production by selecting a specific day in the past.

 visualize the energy prediction results for specific
prosumer or energy asset.

Physics-informed Modeling Framework
This tool focuses on control-oriented modeling of building
thermal dynamics.

The tool will allow users to:

 Model the thermal behavior of a building

 Predict future states of this building

 Perform what-if analysis for this building.

Goals The tools aim to achieve the WP objectives by developing
models for data, implementing Digital Twins, developing
techniques and forecasting algorithms able to predict energy
consumption and usage.

Multi-purpose clustering tool for thermal loads and assets

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 15(72)

The tool delivers as output the calculated clusters, which are
used as input by algorithms/services executed at subsequent
stages towards improving their performance. It is particularly
useful for improving the performance of generic algorithms
(e.g. demand forecasting) that cannot be optimized to model
the performance of each unique asset (e.g. specific
boiler/user), but can be calibrated for assets featuring similar
characteristics (e.g. boilers of the same technology/consumers
with similar heating habits).

Dynamic simulator for modelling thermal loads and assets
The tool generates synthetic time-series that reflect the real-
world behaviour of the considered set of thermal assets
(heating system, building, occupants), under different
configurations. It is particularly useful for comparing the
performance of the considered set of thermal assets (heating
system, building, occupants), based on real historical data
versus the digital twin model when employing different
configurations, towards quantifying the potential improvement
when modifying the set of assets, for instance by replacing the
heating system with one of improved characteristics.

Energy Forecasting Tool
The tool predicts the energy demand, generation and flexibility
of prosumers and energy assets. The tool runs on demand
considering historical energy data as well as near real time
monitored data.

Physics-informed Modeling Framework
The tool should periodically learn the behavior of the building
using available/new data and clusters, returning a trained
model of the building

Product overview

Product perspective Multi-purpose clustering tool for thermal loads and assets
The tool runs on the server side and is executed on demand,
taking as input historical data collected from:

 heating system data (water temperature, etc.) and
energy consumption data as captured from the
attached domX heating controller

 user heating preferences as captured by the DomX
smartphone application and the room thermostat

 indoor and outdoor environmental data (temperature,
humidity, etc.) as captured by various connected
sensors and web services

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 16(72)

The tool periodically analyzes the collected data through ML
multi-dimensional clustering algorithms to deliver as output
clusters of assets with similar characteristics in terms of:

 user behavior

 demand patterns

 offered flexibility

 building performance

 heating system performance

The clustering results are stored in a database and are
accessible for integration with other components/services
through a web API.

The output is also offered in human readable reports in html
and pdf formats.

Dynamic simulator for modelling thermal loads and assets
The tool runs on demand, taking as input historical data
collected from:

 heating system data (water temperature, etc.) and
energy consumption data as captured from the
attached domX heating controller

 user heating preferences as captured by the domX
smartphone application and the room thermostat

 indoor and outdoor environmental data (temperature,
humidity, etc.) as captured by various connected
sensors and web services

The tool analyzes the collected time-series to output a digital
twin model of the given set of thermal assets (heating system,
building, occupants), by generating synthetic time-series that
reflect the real-world behaviour under different configurations.

The tool employs:

 mathematical models to simulate linear behaviors

 neural networks to learn the non-linear behaviour out
of energy (e.g. boiler consumption) and non-energy
data (boiler operating temperature).

The generated synthetic time-series are stored in a time-series
database and are accessible for integration with other
components through a web API.

The output can also be integrated with a custom dashboard for
visualizing the performance difference of the different
monitored parameters (e.g. indoor temperature, boiler
consumption) across time, between the actual and synthetic

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 17(72)

datasets.

Energy Forecasting Tool

 The tool runs on the server side while the tool front end
will be shown on client side in a browser.

 The energy forecasting tool Graphical User Interface
(GUI) provides menus, toolbars, buttons, panes,
containers, grids allowing for easy control by a mouse.

 The tool considers the historical energy data as well as
of the monitored energy data that were previously
saved in a database.

 The tool stores the prediction results in a database
which will provide an API for integration with other
components.

 The tool considers both energy features as well as
contextual features in the prediction process.

Physics-informed Modeling Framework
The application works on a local machine as python script files.

The inputs can be given directly in the script file or provided in
the form of JSON input files.

Training data needs to be provided as .csv files.

Product functions Multi-purpose clustering tool for thermal loads and assets
The tool analyzes household heating data collected from
various data sources (heating controller, smartphone
application, climate sensors) and delivers automated clustering
results identifying consumers/buildings/heating systems
characterized by similar behaviour/performance.

Dynamic simulator for modelling thermal loads and assets
The tool analyzes household thermal data collected from
various data sources (heating controller, smartphone
application, climate sensors) and outputs synthetic time-series
that reflect the real-world behaviour of the considered set of
thermal assets (heating system, building, occupants), under
different configurations.

Energy Forecasting Tool
The tool will predict the energy demand / generation or
flexibility of prosumers and energy assets.

Physics-informed Modeling Framework
The tool will allow users to:

 Model the thermal behavior of a building

 Predict future states of this building

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 18(72)

 Perform what-if analyses for this building

User characteristics Multi-purpose clustering tool for thermal loads and assets
The tool is intended for integration with other
components/services through a web API and field experts for
studying the human readable exported reports.

Dynamic simulator for modelling thermal loads and assets
The tool is intended for integration with other
other components/services through a web API and field experts
for simulating/visualizing the performance of thermal assets
under different configurations.

Energy Forecasting Tool
The software is intended for general users with no previous
experience and no specific technical expertise required.

Physics-informed Modeling Framework
The software is intended for general users with little previous
experience. Technical expertise is required to analyse the
trained models.

2.2.1.2 Tools

2.2.1.2.1 Multi-purpose clustering framework for thermal loads and assets (TLC)

Functional requirements

Functional Requirements

ID Requirement Related Use Case

TLC-1 The tool should consider energy data stored
in a database and should store the
clustering results in a database

LLUC4_1
LLUC4_2
LLUC4_3

TLC-2 The tool shall be able to analyze thermal
data collected from various data sources
(heating controller, smartphone application,
climate sensors)

TLC-3 The tool shall allow integration with other
components/services through a REST API

TLC-4 The tool shall provide clustering results to
be exported in human readable reports
(html/pdf)

TLC-5 The tool shall provide clustering results
identifying heating systems/buildings/users
characterized by similar
behaviour/performance

Performance requirements

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 19(72)

Performance Requirements

ID Requirement

TLC-6 The tool should generate a clustering report
whenever new data is added (i.e., new household). As
an example, data collected for 100 households with
historical information of less than a year, should be
clustered in less than 30 min, excluding the time
needed for data fetching.

Interface requirements

Interface Requirements

ID Requirement

TLC-4 The tool shall provide clustering results to be
exported in human readable reports (html/pdf).

TLC-2 The tool shall be able to analyze thermal data
collected from various data sources (time-series DBs,
relational DBs, message brokers).

TLC-3 The tool shall allow integration with other
components/services through a REST API.

Design constraints
No such constraints have been identified at this point

Software system attributes

Software System Attributes

ID Requirement Software Attribute

TLC-10 Each clustering output should
produce clusters with cohesion,
characterized by a positive Silhouette
score at minimum. Optimally, over
50% of clustering outputs should
have a Silhouette coefficient over
0.2.

Reliability

TLC-11 The tool should ensure data privacy,
so that no personal data are able to
be collected through the REST API
exposing data from the DBs

Privacy

TLC-12 The tool should be only accessible by
certified users that have been
granted a valid JWT token.

Security

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 20(72)

Technology stack

A custom web-based graphical user interface will be developed by combining the Vue.js and
Grafana frameworks for visualizing the outputs of the thermal load clustering tool. Real-time data
collected from the heating controllers are integrated using the MQTT message broker and stored
in the Influx time-series DB. Pandas, SciKit Learn and TensorFlow will be used to handle the data
and train the clustering models. The clustering results are stored in MySQL DB exposed over a
REST API while at the same time employing JWT tokens for guaranteeing secure data exchange
with other services.

Figure 4 Multi-purpose clustering framework for thermal loads and assets (TLC) Technology Stack

Verification

Verification of the attributes will be performed through unit tests and integration tests.

2.2.1.2.2 Dynamic simulator for modelling thermal loads and assets (SLC)

Functional requirements

Functional Requirements

ID Requirement Related Use Case

SLC-1 The tool should consider energy data stored
in a database and should store the
simulation results in a database

LLUC4_1
LLUC4_2
LLUC4_3

SLC-2 The tool shall be able to analyze thermal

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 21(72)

data collected from various data sources
(heating controller, smartphone application,
climate sensors)

SLC-3 The tool shall generate synthetic time-series
results that reflect the real-world behaviour
under different configurations

SLC-4 The tool shall allow integration with other
components/services through a REST API

SLC-5 The tool shall simulate thermal assets for
household heating scenarios, by generating
the digital twin representation of their core
components (heating system, building,
occupants).

Performance requirements

Performance Requirements

ID Requirement

SLC-6 The tool should generate the simulation results for
one household and by using the forecasting horizon
of 15 minutes in less than 30s.

Interface requirements

Interface Requirements

ID Requirement

SLC-2 The tool shall be able to analyze thermal data
collected from various data sources (time-series DBs,
relational DBs, message brokers).

SLC-4 The tool shall allow integration with other
components/services through a REST API.

SLC-9 The tool should be able to visualize the performance
difference of the different monitored parameters (e.g.
indoor temperature, boiler consumption) across time,
between the actual and simulated datasets.

Design constraints
No such constraints have been identified at this point

Software system attributes

Software System Attributes

ID Requirement Software Attribute

SLC-10 The tool should forecast the desired
metrics with a Mean Absolute
Percentage Error (MAPE) below 10 %
for a forecasting horizon of 15 min.

Reliability

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 22(72)

SLC-11 The tool should ensure data privacy,
so that no personal data are able to
be collected through the REST API
exposing data from the DBs

Privacy

SLC-12 The tool should be only accessible by
certified users

Security

Technology stack

A custom web-based graphical user interface will be developed by combining the Vue.js and
Grafana frameworks for visualizing the outputs of the thermal load simulation tool. Real-time data
collected from the heating controllers are integrated using the MQTT message broker and stored
in the Influx time-series DB. Pandas, Statsmodels and TensorFlow will be used to handle the data
and train the forecasting models. The simulation results are stored in the Influx time-series DB and
MySQL DB, exposed over a REST API while at the same time employing JWT tokens for
guaranteeing secure data exchange with other services.

Figure 5 Dynamic simulator for modelling thermal loads and assets (SLC) Technology Stack

Verification

Verification of the attributes will be performed through unit tests and integration tests.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 23(72)

2.2.1.2.3 Energy Forecasting Tool (EFT)

Functional requirements

Functional Requirements

ID Requirement Related Use Case

EFT-1 The tool shall allow users to login. LLUC1_1
LLUC1_2
LLUC2_1
LLUC2_2
LLUC2_3
LLUC3_2
LLUC3_3
LLUC4_1
LLUC4_2
LLUC4_3

EFT-2
The tool shall allow users to visualize their
energy consumption or production

EFT-3
The tool shall allow users to visualize their
forecasted energy consumption / production
or flexibility

EFT-4
The tool should consider energy data stored
in a database and should save the prediction
results in the database

EFT-5
The tool shall forecast the energy
consumption, production, and flexibility

Performance requirements

Performance Requirements

ID Requirement

EFT-6 The tool should display the forecasting results within
60s after the prediction process is initiated.

Interface requirements

Interface Requirements

ID Requirement

EFT-7 The tool should provide a web interfaces for users
featuring menus, toolbars, buttons, panes, containers,
grids allowing for easy control by a keyboard and a
mouse.

EFT-8 The tool should provide web inferences to visualize
the historical energy data as well as the energy
predictions of demand, production, and flexibility.

EFT-9 The tool should store the energy prediction results in
a database allowing other systems/components to get
data using rest APIs.

EFT-10 The tool should get the energy data used in
forecasting from a database using rest APIs.

Design constraints
No such constrains have been identified at this point

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 24(72)

Software system attributes

Software System Attributes

ID Requirement Software Attribute

EFT-11 The tool energy prediction error
should be below 15%.

Reliability

EFT-12 The tool shall allow users the users
to see only their data after login

Security

Technology stack

React JS is used to provide a web-based graphical user interface for the forecasting tool. MySQL
will be the database of the tool and a REST API is used to get / store the energy data and
prediction results. SciKit Learn, KERAS and TensorFlow will be used to define and train the energy
prediction models. The smart meters data will be integrated using queuing systems such as
RabbitMQ.

Figure 6 Energy Forecasting Tool Technology Stack

Verification

Verification of the attributes will be performed through unit tests and integration tests.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 25(72)

2.2.1.2.4 Physics Informed Modeling Framework

Functional requirements

Functional Requirements

ID Requirement Related Use Case

PIMF-1 The tool shall allow users to
model the thermal behavior of
a single household.

LLUC1_1
LLUC2_1
LLUC3_1
LLUC4_1
LLUC4_2
LLUC4_3

PIMF-2 After training, the model
generated by this tool can be
used for predicting future
states and perform what-if
analyses

Performance requirements

Performance Requirements

ID Requirement

PIMF-3 The tool should give predictions within a range
of ±1.5°C.

Interface requirements
Not decided yet.

Design constraints
Not decided yet.

Software system attributes

Software System Attributes

ID Requirement Software Attribute

PIMF-4 The tool performance will be
benchmarked with validation
data and only used if this
condition is satisfied.

Reliability

PIMF-5 The tool will have built-in
warm start models for aiding
training. Each training will be
followed by a model
checkpoint.

Availability

Technology stack

This tool uses Python 3.7 with standard data science and machine learning packages: numpy,
pandas, pytorch, along the standard python packages. The training data needs to be loaded in the

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 26(72)

form of .csv files or dataframes. The trained models are saved using built-in pytorch functions and
as serialized objects based on Python’s pickle module.

Verification

Verification of the attributes will be performed through unit tests and integration tests. Further
verification would include model testing on an in-house simulator.

2.2.2 Digital-Twin enabled Flexibility and information valorisation (WP5)

2.2.2.1 Assets

Scope

Name Digital-Twin enabled Flexibility and information valorisation

Description The tools produced will leverage on WP4 digital models in
combination with ML techniques and AI algorightms in order
to offer new flexibility services.

Reinforcement Learning based Control Framework
This tool focuses on developing optimal control policies using
reinforcement learning based algorithms, leveraging the
models developed in WP4.

The tool will allow users to:

 Generate control policies that optimize assets to the
desired objective / cost function.

 Perform comparison of different control policies for a
specific system/ building/ asset group.

Integrated energy and non-energy smart home service
manager
This tool is enabled through the integration of different smart
home sensors able to characterize both energy (electricity
consumption, boiler modulation) and non-energy parameters
(climate comfort, indoor air quality, etc.). The integrated
service manager enables home users to specify their personal
preferences (room target temperature and humidity) and goals
(e.g. prioritize comfort or economy).

Cross Sector Services Flexibility Optimization
The tool will allow the combination of flexibility services from
different sectors to increase the amount of flexibility mobilized
at the energy community level.
The tool will allow the users to:

 visualize the levels of energy flexibility of each
individual service.

 visualize the target / goal of the flexibility combination

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 27(72)

optimization.

 visualize the optimal combination of services or control
variables to meet the goal.

Goals The tools use algorithms and techniques implemented in the
previous WP in order to offer many different services. For
instance, ML based algorithms and AI techniques are used for
learning from the current data to produce control policies and
flexibility services.

Reinforcement Learning based Control Framework
This tool learns from available data, leveraging models created
in WP4, to compute optimum control policies that can be used
for demand response applications.

Integrated energy and non-energy smart home service
manager
The main goals of the tool are to:

 offer smart management of IoT-enabled home
appliances, devices and sensors

 improve energy management by considering both
energy and non-energy parameters

 improve the end user comfort and living by adapting
the environment to the preferences of home residents.

Cross Sector Services Flexibility Optimization
The tool should work offline and should decide on the optimal
combination of flexibility services to meet the goal. The
combinations should be stored in a database.

Product overview

Product perspective Reinforcement Learning based Control Framework
The framework includes two components:

 An application that works on a local machine as python
script files. The inputs can be given directly in the script
file or provided in the form of JSON input files. Training
data needs to be provided as .csv file

 An application that will be deployed on managed cloud
services and integrated in the aggregator’s backend for
executing the field demonstrations.

Integrated energy and non-energy smart home service
manager
The tool is delivered as a service executed locally on the DomX
home-IoT gateway, which acts as the central component
collecting measurements from home devices able to
characterize both energy and non-energy parameters and
controlling the operation of multiple appliances.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 28(72)

The tool considers as input multiple energy parameters
through the following devices:

 smart electricity meter (aggregate home electricity
power-energy monitor)

 smart electricity plug (device electricity power-energy)

 smart heating controller (instant boiler modulation,
energy consumption for space heating, DHW
preparation)

The tool considers as input multiple non-energy parameters
through the following devices:

 climate sensors able to characterize user comfort
(temperature, humidity, light)

 security sensors (door contacts, human presence)

 indoor air quality sensors (PM2.5, CO2, VOC, etc.)

The tool can control the operation of multiple device types
through the following actuators:

 smart relay (phase level device control ON/OFF)

 smart electricity plug (plug level device control
ON/OFF)

 smart heating controller (modulated boiler control,
target temperature control both for space heating and
DHW preparation)

Indicative scenarios that can be offered through the integrated
service manager include the:

 configuration of personal climate comfort thresholds
(temperature 23°C, humidity 50%) and consumption
profile (economy)) that continuously adapt the
operation of connected appliances belonging to
different vectors (gas boiler for temperature control
and dehumidifier for humidity control).

 delivery of advice to end users when the indoor air
quality has fallen below certain thresholds and manual
action needs to be taken (e.g., natural ventilation).

Cross Sector Services Flexibility Optimization

 The tool is server side and has as clients the latest
version of the Chrome browser.

 The tool GUI provides menus, toolbars, buttons, panes,
containers, grids allowing for easy control by a
keyboard and a mouse.

 The tool connects to a database for taking flexibility
data and stores the results to be used by 3rd party
applications.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 29(72)

Product functions Reinforcement Learning based Control Framework
The tools will allow users to:

 Generate control policies that optimize assets to the
desired objective

 Perform comparison of different control policies for a
specific system/ building/ asset group.

Integrated energy and non-energy smart home service
manager
The tool provides the following functions:

 improve energy management by considering both
energy and non-energy parameters

 configure user preferences and consumption profiles

 improve the end user comfort and living by adapting
the environment to the preferences of home residents

Cross Sector Services Flexibility Optimization
The tool allows its users to visualize the levels of energy
flexibility of each individual service, the target / goal of the
flexibility combination optimization and the optimal
combination of services or control variables to meet the goal.
The tool decides on the optimal combination of flexibility
services to meet the goal.

User characteristics Reinforcement Learning based Control Framework
The software is intended for general users with little previous
coding experience. Technical expertise is required to analyse
the computed policies.

Integrated energy and non-energy smart home service
manager
The software is intended for general users with no previous
experience and no specific technical expertise required.

Cross Sector Services Flexibility Optimization
The tool is intended for users with experience in the
management of smart grid and flexibility services.

2.2.2.2 Tools

2.2.2.2.1 Reinforcement Learning based Control Framework

Functional requirements

Functional Requirements

ID Requirement Related Use Case

RLCF-1
The tool shall allow users to
generate control policies that

LLUC1_2
LLUC2_1

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 30(72)

optimize according to the pre-
defined objective and which is
adaptable to different use
cases / cost functions.

Performance requirements

Performance Requirements

ID Requirement

RLCF-2 The tool should generate control policies
better than business-as-usual policies.

RLCF-3 Avoiding violations of comfort constraints

Interface requirements

Interface Requirements

ID Requirement

RLCF-4 Device-cloud integration (proprietary
interface)

RLCF-5 Use of Energy market and meteo data via
proprietary interface

Design constraints

 Satisfy comfort constraints

Software system attributes

Software System Attributes

ID Requirement Software Attribute

RLCF-7 The tool performance will be
benchmarked with validation
data and compared with other
control algorithms.

Reliability

RLCF-8 The tool will have built-in
warm start models for aiding
the training phase. Each
training phase will be followed
by a model checkpoint.

Availability

Technology stack

This tool uses Python 3 with standard data science and machine learning packages: numpy,
pandas, pytorch, along the standard python packages. The training data needs to be loaded in the
form of .csv files, dataframes or via a proprietary data pipeline in the Flexpond platform. The

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 31(72)

trained models are saved using built-in pytorch functions and as serialized objects based on
Python’s pickle module.

Verification

Verification of the attributes will be performed through unit tests and integration tests. Further
verification would include model testing via an in-house simulator and lab testing where
appropriate.

2.2.2.2.2 Integrated energy and non-energy Smart home service Manager (ISM)

Functional Requirements

Functional Requirements

ID Requirement Related Use Case

ISM-1 The tool should support different smart
home sensors able to characterize energy
(electricity consumption, boiler modulation)
parameters and non-energy parameters
(climate comfort, indoor air quality, etc.)

LLUC4_1
LLUC4_2
LLUC4_3

ISM-2 The tool should support different smart
home sensors able to characterize non-
energy parameters (climate comfort, indoor
air quality, etc.)

ISM-3 The tool should enable home users to
specify their personal preferences (room
target temperature and humidity) and goals
(e.g. prioritize comfort or economy).

ISM-4 The tool shall enable the translation of user
preferences into commands able to control
the operation of multiple appliances
towards adapting the home environment to
the user needs.

Performance requirements

Performance Requirements

ID Requirement

ISM-5 The tool should enable the analysis of energy and
non-energy parameters to be periodically executed
at least every 60s and be directly translated into

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 32(72)

control commands, with acceptable delays lower than
1s.

Interface requirements

Interface Requirements

ID Requirement

ISM-6 The tool shall provide home users the ability to
specify their personalized preferences and goals
through an easy to use smartphone application
screen.

ISM-7 The tool shall provide home users the ability to
control the operation of multiple home devices
through a transparent set of rules that do not vary
based on the type of controlled devices (gas boiler
for temperature control and dehumidifier for
humidity control).

Figure 7 Smartphone application screen for setting personalized

preferences

Design constraints
No such constraints have been identified at this point

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 33(72)

Software system attributes

Software System Attributes

ID Requirement Software Attribute

ISM-8 The tool should ensure data privacy,
so that no personal data can be
exposed without the user’s consent

Privacy

ISM-9 The tool should enable the
integration of new device
types/sensor measurements with
ease.

Maintainability

Technology stack

The Integrated energy and non-energy Smart home service Manager is executed locally as a local
agent on the Interoperable home-IoT gateway that is based on the Raspbery Pi device, directly
supporting the Wi-Fi, Bluetooth and ZigBee protocols. The user can specify personalized goals that
directly activate the rule engine of Openhab and can automatically adapt the operation of
multiple device types, such as smart relay plugs, heating controllers, etc.

Figure 8 Device types considered by the Integrated energy and non-energy Smart home service Manager (ISM)

Verification

Verification of the attributes will be performed through unit tests and integration tests.

2.2.2.2.3 Cross Sector Services Flexibility Optimization Tool (CSSFO)

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 34(72)

Functional requirements

Functional Requirements

ID Requirement Related Use Case

CSSFO-1 The tool shall allow users to visualize
the levels of energy flexibility of each
individual service

LLUC1_1
LLUC1_2
LLUC2_1
LLUC3_1
LLUC4_1
LLUC4_2
LLUC4_3

CSSFO-2 The tool shall allow users to visualize
the target / goal of the flexibility
combination optimization

CSSFO-3 The tool shall allow users to visualize
the optimal combination of services
or control variables to meet the goal

CSSFO-4 The tool shall decide on the optimal
combination of flexibility services to
meet the goal

CSSFO-5 The tool should get flexibility data and
target goal form a database

CSSFO-6 The tool should store the optimal
combination result in a database

Performance requirements

Performance Requirements

ID Requirement

CSSFO-7 The tool should take an optimization decision and display the
results in less than 5 minutes.

Interface requirements

Performance Requirements

ID Requirement

CSSFO-8 The tool should provide a web interface for users featuring
menus, toolbars, buttons, panes, containers, grids allowing for
easy control by a keyboard and a mouse.

CSSFO-9 The tool should provide web inferences to visualize the levels
of energy flexibility of each individual service, visualize the
target / goal of the flexibility combination optimization and to
visualize the optimal combination of services or control
variables to meet the goal.

CSSFO-10 The tool should store the flexibility combination optimization
results in a database allowing other systems to get data using
rest APIs

CSSFO-11 The tool should get the cross-sector flexibility services from a
database using rest APIs.

Design constraints

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 35(72)

No such constrains have been identified at this point

Software system attributes

Software System Attributes

ID Requirement Software Attribute

CSSFO-12 The tool should have high usability
allowing the users to complete the task
with a minimum number of steps

Usability

Technology stack

React JS is used to provide a web-based graphical user interface for the tool. MySQL will be the database of
the tool and REST API is used to get / store the data. A custom solver based on Java is used to implement
and run the heuristic for deciding on the optimal combination of flexibility services to meet the goal.

Figure 9 Cross Sector Services Flexibility Optimization Tool Technology Stack

Verification

Verification of the attributes will be performed through unit tests and integration tests.

2.2.3 DLT Enablers for Decentralized VPP (WP6)

2.2.3.1 Assets

Scope

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 36(72)

Name DLT Enablers for Decentralized VPP

Description The tools created in the WP are used to integrate and uniform
heterogeonous data and manipulate it. This data is used to
enable a flexibility marketplace and flexbility tools.
Specifically, the products are the following:

Interoperable Home automation Gateway
The home-IoT Gateway of domX provides for monitoring and
control of the home environment, integrating various home
sensors/controllers/appliances belonging to different vendor
ecosystems and making them interoperable.

Decentralized Management of Energy Communities Product
The product provides 4 integrated software tools for the
management of energy communities:

 Community level Blockchain based Flexibility
Marketplace: application allowing the users from a
community to trade their energy flexibility in a P2P
manner. Different types of flexibilities are considered
such as electrical, thermal, comfort services, etc.

 Blockchain Management and Settlement of Flexibility
driven DR: tool which allows the injection of energy
goals in smart contracts, the tracking of flexibility
delivery and energy and financial settlement

 Community Self-governance to Deliver Flexibility
Services Tool: application which allows the creation and
decentralized management of coalitions in a community
to deliver flexibility services on demand to the main grid

 Edge Metering Infrastructure and Interoperable
Gateway: tool which allows monitoring of energy data
and integration with smart contracts for flexibility
actions automation.

Goals Interoperable Home automation Gateway
The main goals of the interoperable domX home automation
gateway are to:

 Support cost-effective interoperable smart home
automation across vendor ecosystems

 Support the dominant wireless protocols of the smart
home domain

 Offer smart management of IoT-enabled home
appliances, devices and sensors.

Decentralized Management of Energy Communities Product

 Community level energy balance, unlocking the
flexibility potential to meet local sustainability goals via
P2P trading of local energy flexibility.

 Enable communities to provide flexibility services to the

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 37(72)

main grid via decentralized management and self-
governance.

Product overview

Product perspective Interoperable Home automation Gateway
The domX home-IoT gateway builds on the Raspberry Pi device
and runs the OpenHAB open home automation protocol,
supporting the integration of a multitude of devices and
technologies into:

 an overarching gateway device

 a uniform user interface and

 a common approach to automation rules
across the entire system, regardless of the number of
manufacturers and sub-systems involved.

The domX gateway supports the dominant wireless protocols
of the smart home domain:

 Wi-Fi

 Bluetooth

 ZigBee

The gateway supports a wide variety of sensors, meters,
controllers and home appliances, including:

 smart electricity meters

 smart plugs to control white goods

 heating controllers to control legacy heaters and boilers

 IR emulators to control legacy ACs

 remotely controlled relays to manage the operation of
heavy consuming appliances, such as electric water
heaters/space heaters

 climate sensors able to characterize indoor conditions
(temperature, humidity, light)

 indoor air quality sensors (PM2.5, CO2, VOC, etc.)

 security sensors (door contacts, human presence)

Decentralized Management of Energy Communities Product

 The product runs on the blockchain using smart contracts
while the tool front end will be shown on client side in a
browser.

 The product GUI provides menus, toolbars, buttons, panes,
containers, grids allowing for easy control by a mouse.

 The product considers the prediction of energy demand,
generation and/or flexibility.

 The matching between the flexibility bids and offers is done

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 38(72)

using services integrated with the Blockchain via Oracles
providing both cooperative and competitive (price-driven)
trading models for matching.

 The optimal coalitions for community level energy flexibility
services delivery are provided using services with the
Blockchain via Oracles.

 The product stores the energy flexibility transactions on the
blockchain and injects the agreed levels of flexibility into
the smart contracts.

 The product considers the edge-monitored energy data for
tracking the energy flexibility actual delivery according to
the transactions’ values

 The product provides flexibility management actions to
meet the target goals to be executed via an interoperable
gateway for automation

 The product deals with the energy and financial settlement
of energy flexibility transactions.

Product functions Interoperable Home automation Gateway
The domX home-IoT gateway provides the following functions:

 smart management of home appliances, devices and
sensors

 control of all home assets through a uniform user
interface

 setup of automation rules through a common approach

Decentralized Management of Energy Communities Product

 The product shall allow users to register their flexibility
assets and flexibility management preferences (e.g., via the
flexibility marketplace or self-governance of coalitions)

 The product shall allow users to login and visualize their
energy predictions, market session information and to
submit flexibility bids and offers.

 The product will match and pair the flexibility bids and
offers and will generate and store flexibility transactions on
the blockchain.

 The product shall allow the construction of community
levels coalitions and their self-governance to meet the
constraints and deliver on demand flexibility services to the
main grid.

 The product shall track the energy flexibility delivery of
users according to the transactions values and monitored
data.

 The product shall assess deviations from traded values and
shall do the energy and financial settlement of flexibility
transactions.

User characteristics Interoperable Home automation Gateway

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 39(72)

The software is intended for general users with no previous
experience and no specific technical expertise required.

Decentralized Management of Energy Communities Product
The software is intended for small scale prosumers or
aggregators belonging to an energy community, or for local
distribution system operators.

2.2.3.2 Tools

2.2.3.2.1 Community level Blockchain based Flexibility Marketplace (CBFM)

Functional requirements

Functional Requirements

ID Requirement Related Use Case

CBFM-1 The application shall allow users to register to participate
in the trading sessions.

LLUC1_1
LLUC1_2
LLUC2_1
LLUC3_1
LLUC4_1
LLUC4_2
LLUC4_3

CBFM-2 The application shall allow users to login.

CBFM-3 The application shall allow users to visualize their forecast
of energy consumption, production, or flexibility

CBFM-4 The application shall allow users to visualize market
session information

CBFM-5 The application shall allow users to place bids for buying
energy flexibility

CBFM-6 The application shall allow users to place offers for selling
energy flexibility

CBFM-7 The application shall allow the matching of flexibility bids
and offers and generation of energy transactions on the
blockchain

CBFM-8 The application should provide either cooperative or
competitive flexibility trading model setups

CBFM-9 The application shall allow the users to visualize their
energy transactions

CBFM-10 The application shall allow the injection of flexibility target
levels into the users’ smart contracts

Performance requirements

Performance Requirements

ID Requirement

CBFM-11 The application should do the matching and display the flexibility
transactions results within 60s after the process is initiated.

Interface requirements

Interface Requirements

ID Requirement

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 40(72)

CBFM-12 The application should provide a web interface for users featuring
menus, toolbars, buttons, panes, containers, grids allowing for
easy control by a keyboard and a mouse.

CBFM-13 The application should provide web inferences to visualize the
predicted energy data, blockchain energy transactions and
market session information.

CBFM-14 The application should provide web interfaces to submit flexibility
bids and offers.

CBFM-15 The application should store the energy flexibility bids and offers
submitted on a trading session as well as the energy transactions
on the blockchain allowing other systems/components to get
data using rest APIs.

CBFM-16 The application should get the energy prediction data as well as
the monitored energy data from a database using rest APIs.

Design constraints
No such constrains have been identified at this point

Software system attributes

Software System Attributes

ID Requirement Software Attribute

CBFM-17 The application shall allow the registration of
flexibility bids and offers in a tamper proof manner
on the blockchain

Security

Technology stack

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 41(72)

Figure 10 Technology Stack - DLT Enablers for Decentralized VPP

Verification

Verification of the attributes will be performed through unit tests and integration tests.

2.2.3.2.2 Decentralized Management and Settlement of Flexibility driven DR (DMSFDR)

Functional requirements

Functional Requirements

ID Requirement Related Use Case

DMSFDR-1 The tool shall allow users to visualize their monitored
energy data compared with flexibility values promised in
the agreed transactions

LLUC1_1
LLUC1_2
LLUC2_1
LLUC3_1
LLUC4_1
LLUC4_2
LLUC4_3

DMSFDR-2 The tool shall allow users to visualize potential deviations
from promised flexibility values

DMSFDR-3 The tool shall allow users to visualize the penalties and
rewards established based on their conformance levels

DMSFDR-4 The tool shall allow the usage of non-financial schemes for
rewarding or penalizing the users that are not delivering
as expected

DMSFDR-5 The tool shall settle the users accounts based on
registered transactions and monitored energy data

DMSFDR-6 The tool shall replace the users that are not delivering the
expected levels of energy flexibility

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 42(72)

Performance requirements

Performance Requirements

ID Requirement

DMSFDR-7 The tool should do the settlement as close as possible to real
time (about 30 minutes).

Interface requirements

Performance Requirements

ID Requirement

DMSFDR-8 The application should provide a web interface for users featuring
menus, toolbars, buttons, panes, containers, grids allowing for
easy control by a keyboard and a mouse.

DMSFDR-9 The application should provide web inferences to visualize the
monitored energy data, expected levels of flexibility, potential
deviation, penalties/rewards, users’ wallets, etc.

DMSFDR-10 The application should get the monitored energy data from a
database using rest APIs.

Design constraints
No such constrains have been identified at this point

Software system attributes

Software System Attributes

ID Requirement Software Attribute

DMSFDR-SRS-11 The tool shall assure the
privacy of users’ energy data

Security

Technology stack

React JS is used to provide a web-based graphical user interface for the forecasting tool. MySQL
will be the database of the tool and a REST API is used to get / store the energy data and
prediction results. SciKit Learn, KERAS and TensorFlow will be used to define and train the energy
prediction models. The smart meters data will be integrated using queuing systems such as
RabbitMQ.

Verification

Verification of the attributes will be performed through unit tests and integration tests.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 43(72)

2.2.3.2.3 Community self-Governance to Deliver Flexibility Services Tool (CGDFS Tool)

Functional requirements

Functional Requirements

ID Requirement Related Use Case

CGDFS-1 The application shall allow users to login. LLUC1_1
LLUC1_2
LLUC2_1
LLUC3_1
LLUC4_1
LLUC4_2
LLUC4_3

CGDFS-2
The application shall allow users to visualize their forecast
of energy consumption, production, or flexibility

CGDFS-3
The application shall allow users to visualize the
requirements and constraints of the flexibility service to
be delivered

CGDFS-4
The application shall allow users to self-organize in
coalitions inside the community for meeting the flexibility
service constraints

CGDFS-5
The application shall allow the injection of flexibility target
levels into the users’ smart contracts

CGDFS-6
The application shall allow users to visualize the coalition
and their monitored energy values compared to the
agreed ones

CGDFS-7
The application shall allow the storage of energy flexibility
transactions on the chain in a tamper proof manner

Performance requirements

Performance Requirements

ID Requirement

CGDFS-8 The application should determine the coalition organizations for
flexibility service delivery and display the results within 60s after
the process is initiated.

Interface requirements

Interface Requirements

ID Requirement

CGDFS-9 The application should provide a web interface for users featuring
menus, toolbars, buttons, panes, containers, grids allowing for
easy control by a keyboard and a mouse.

CGDFS-10 The application should provide web inferences to visualize the
predicted energy data, blockchain energy transactions and
community organization in virtual coalitions.

CGDFS-11 The application should store the virtual coalitions, the flexibility
services constraint as well as the energy transactions on the

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 44(72)

blockchain allowing other systems/components to get data using
rest APIs.

CGDFS-12 The application should get the energy prediction data as well as
the monitored energy data from a database using rest APIs.

Design constraints
No such constrains have been identified at this point

Software system attributes

Software System Attributes

ID Requirement Software Attribute

CGDFS-13 The application should determine community
virtual coalitions for meeting flexibility services
constraints with at most 10% tolerance level

Reliability

Technology stack

React JS is used to provide a web-based graphical user interface for the forecasting tool. MySQL
will be the database of the tool and REST API is used to get / store the energy data and prediction
results. SciKit Learn, KERAS and TensorFlow will be used to define and train the energy prediction
models. The smart meters data will be integrated using queuing systems such as RabbitMQ.

Verification

Verification of the attributes will be performed through unit tests and integration tests.

2.2.3.2.4 Interoperable Home automation Gateway (IHG)

Functional requirements

Functional Requirements

ID Requirement Related Use Case

IHG-1 The tool should support the dominant
wireless protocols of the smart home
domain (Wi-Fi, Bluetooth, ZigBee, etc.)

LLUC4_1
LLUC4_2
LLUC4_3

IHG-2 The tool should offer interoperable smart
management of a wide variety of sensors,
meters, controllers and home appliances
commonly found in the home environment.

IHG-3 The tool should support interoperable smart
home automation across vendor ecosystems

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 45(72)

IHG-4 The tool shall enable the setup of
automation rules through a common
approach.

IHG-5 The tool shall provide control of all home
assets through a uniform user interface.

Performance requirements

Performance Requirements

ID Requirement

IHG-6 The tool should provide real-time updates about the
status of each connected appliance/meter/sensor,
with acceptable delays lower than 30 s.

Interface requirements

Performance Requirements

ID Requirement

IHG-7 The tool shall provide home users to use all
connected appliances through a uniform user
interface. (smartphone application/ user dashboard)

IHG-8 The tool shall allow integration with other
components/services over MQTT and a REST API

Figure 11 User dashboard for monitoring/controlling the Interoperable

Gateway for Home Automation (IHG)

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 46(72)

Design constraints
No such constraints have been identified at this point

Software system attributes

Software System Attributes

ID Requirement Software Attribute

IHG-9 The tool should ensure data privacy,
so that no personal data can be
exposed without the user’s consent

Privacy

IHG-10 The tool should ensure security, so
that data exchange between the
gateway and external services is
always encrypted

Security

IHG-11 The tool should enable the
integration of new protocols/device
types with ease.

Maintainability

Technology stack

The gateway is based on the Raspbery Pi device, directly supporting the Wi-Fi and Bluetooth protocols and
the ZigBee protocol through an additional wireless interface. The gateway runs the OpenHAB home
automation framework, enabling monitoring and control of a wide variety of devices/sensors/appliances
across vendor ecosystems. The gateway runs a local instance of the Mosquitto MQTT broker that is used
for communicating with external services and offloading of locally collected data to a cloud hosted Influx
time-series DB. End users use the OpenHAB smartphone application and dashboard for interacting with
connected devices in real-time. Access to historical data is enabled through a Grafana dashboard.

Figure 12 Interoperable Gateway for Home Automation (IHG) Technology Stack

Verification

Verification of the attributes will be performed through unit tests and integration tests.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 47(72)

3 BRIGHT Technologies specifications
3.1 Actors
The identification of actors is a crucial aspect in defining a software architecture. In this context,
an actor is defined as a human user, external hardware, or a software application that interacts
with the BRIGHT system. They often do not represent specific real-world entities but rather a role
or a model of them. For instance, the same real-world entity might play different roles and hence
different actors in BRIGHT. Their interactions with the system can take different forms: for
example, human actors might interact with the application through the web browser or a
smartphone, while a hardware component might interact by exchanging data or requesting the
execution of a specific task.
In this specific context, actors can be grouped and detailed according to the area they belong to. In
the following table, actors are listed and described using the three-dimensional system defined by
SGAM - Smart Grid Reference Architecture Framework (Figure 13); for each dimension, the most
meaningful value has been selected. The three views offered by the framework are
interoperability, domains, and zones. Interoperability is defined as the ability of two or more
systems to be able to exchange information and use it to work in a cooperative way. Each layer, in
the interoperability view, describes in which zones of information management interactions
between domains take place. Domains are related to the physical grid and are identified by each
one of the steps of the electrical energy conversion chain, from the generation to the customer
premise. Finally, zones represent the power system management with the use of hierarchical
levels.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 48(72)

The identified actors in the system, according to the use cases, are the following:

Table 2 List of identified BRIGHT actors

Actor Description Interoperability Domain Zone

Distribution
System
Operator
(DSO)

Company that owns and
manages the energy networks.
Responsible for engaging the
users, and providing energy to
consumers and LECs when
needed, for example during
shortage of local renewable
energy. Benefits from the
energy flexibility provided by
BRIGHT.

Component Distribution Enterprise

Transmission
System
Operator
(TSO)

Company that owns and
manages the energy networks.
Responsible for engaging the
users, and providing energy to
consumers and LECs when
needed, for example during

Component Transmission Enterprise

Figure 13 The Smart Grid Architecture Model

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 49(72)

shortage of local renewable
energy. Benefits from the
energy flexibility provided by
BRIGHT.

Energy service
provider (ESP)

Company responsible for
providing energy services and
for the communication with
district residents.

Function Distribution Enterprise

Service
provider

Company that provides the IoT
hardware, user interfaces and
energy services to consumers.

Function Distribution Enterprise

Technology
provider

Company that is responsible
for providing assets, software
and IoT hardware for asset
control, and other energy
management services for
enabling energy efficiency and
consumer participation to
flexibility services. Responsible
also for the user engagement.

Function Distribution Enterprise

Utility
provider

Company that carries out
billing operation and it sells
energy to the customers.
Provides electricity and/or
natural gas to consumers.

Business Distribution Enterprise

Consumer Company, community, or
person that is connected to the
distribution grid and that
consumes electric energy
and/or natural gas. Engaged to
DR schemes.

Business Customer
premise

Market

Energy user Company, community, or
person that uses electricity
and/or natural gas. Pays bills to
the energy service provider.

Business Customer
premise

Market

EV owner Company, community, or
person that owns an electric
vehicle that is being charged.

Business Customer
premise

Market

Local energy
supplier

Company, community, or
person that is responsible for
providing additional local
renewable energy to the LEC
energy service provider.

Business DER/Customer
premise

Market

Not domestic
consumer

Company, community, or
person that compared with a
domestic user might have a
wider range of flexibility to be

Business Customer
premise

Market

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 50(72)

offered.

Producers of
smart
appliances

Company, community, or
person that produces
appliances that could increase
flexibility at the energy user
level.

Business Customer
premise

Market

Prosumer Company, community, or
person that is connected to the
distribution grid and that can
either consume or produce
electric energy.

Business Customer
premise

Market

Citizen Person that is part of a local
energy community. It is not the
owner of the energy contract,
but its needs must be
considered for the DR
campaign, for example as a
member of a family or a user
of public buildings.

Business Customer
premise

Market

Domestic
consumer

Person to be engaged by the
DSO and to be involved in DR
campaigns.

Business Customer
premise

Market

Energy
communities

Community to be engaged by
the DSO and to be involved in
DR campaigns.

Business Customer
premise

Market

Aggregator Company, or person that is
responsible for engaging
energy users and coordinate
them to act as a single entity
for providing flexibility services
to the DSO.

Business Customer
premise

Market

Forecast
provider

Provider of weather-forecast
related data.

Function Customer
premise

Operation

P2P energy
marketplace
operator

Company, or person that
works as an operator of the
P2P energy marketplace.

Business Customer
premise

Market

Charging
station

Charging stations for EVs Component Customer
premise

Process

Device Hardware device involved in
the communication between
assets, data acquisition, and
the control algorithms.

Component Customer
premise

Process

EVs, flexible
loads and
storage
system

Deployed devices suitable for
DR campaign involvement

Component Customer
premise

Process

Flexible device Controlled device Component Customer Process

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 51(72)

premise

IoT Device IoT devices provided by the
service provider

Component Customer
premise

Process

Legacy gas
boiler

Legacy heating and DHW gas
boiler

Component Customer
premise

Process

Automatic
metering
infrastructure
(AMI)

System that measures,
collects, and analyzes energy
usage, often in real-time.
Communicates with metering
devices, like smart meters,
either on request or on a
schedule

Communication Customer
premise

Operation

Control
algorithm

Responsible for calculating and
sending control signals to the
assets for their optimal
operation

Communication Customer
premise

Operation

Energy
Management
System (EMS)

A system that computes and
forwards optimal control
actions from model provider
actor to assets

Communication Customer
premise

Operation

Flexibility
marketplace

Marketplace designed to
enable P2P energy trading

Communication Customer
premise

Market

Asset An electric or heat energy-
related asset

Information DER/Customer
premise

Process

Communal
asset

Electricity-related assets on
the communal level

Information DER/Customer
premise

Station

Private asset Private electricity-related asset
that allows flexibility

Information Customer
premise

Operation

Data provider Provides the data that can be
shared for developing services

Function Customer
premise

Station

Service
provider

Entity that creates and offers
new services

Function Customer
premise

Enterprise

Service user User of the services Business Customer
premise

Market

Flexible asset Devices actively involved in DR
schemes

Component Customer
premise

Operation

Another approach for organizing the different actors is to identify how they are in relationship
with each other. In the following table, actors are organized logically according to their role or
type of interaction they have with the system. Types of relationships are specialization, which goes
from left to right in the underlying table, or generalization, which goes in the opposite direction.
The aggregations are:

 Group: represent the macro group for a type of actor. For example, all kind of devices such
as IoT, EV or even legacy will be grouped together in the “Device” group.

 Type: represent the first logic aggregation for actors in the same group. For instance, every
energy user regardless of further specifications, will be categorized together at this level.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 52(72)

 Subtype: it’s the last specification for an actor. If needed, gives another specialization to an
already defined type. For example, the energy data provider is a special type of data
provider.

Table 3 Relations among actors of the system

Group Type Subtype

Subject (Person,
Company,
Community)

DSO

TSO

Service Provider Energy Service Provider (ESP)

Technology Provider

Utility Provider

Service User

Energy Provider Local Energy Supplier

Prosumer

Energy User

Citizen

Domestic Consumer

Not Domestic Consumer

EV Owner

Energy Communities

Aggregator

P2P Energy Marketplace Operator

Device Flexible Device

IoT Device

Charging Station

EV

Legacy Device Legacy Gas Boiler

System Automatic Metering Infrastructure
(Ami)

Control Algorithm

Energy Management System (EMS)

Flexibility Marketplace

Asset Communal Asset

Private Asset

Data Data Provider Energy Data Provider

Forecast Data Provider

3.2 Datasets
To compute and schedule energy usage for DR purposes, BRIGHT needs to access data from many
different sources. Charging stations data, energy usage during the day, sensors’ data and weather-
related information are just some of them. Due to their natural heterogeneity and the different
methodologies used to collect them, the data management process requires a unique and tailored
strategy for each available source. As a matter of fact, each pilot can rely on a subset of all the
available sources; furthermore, each IoT device or system used to collect data might have a

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 53(72)

different manufacturer with possibly closed specifications. To address this issue, BRIGHT will
define and share a common structure for each kind of energy-related data. The goal of the
specification is to offer a unique interface for every and each typology of data (e.g., electric energy
data, heat data, weather data). In that way, the application will be able to make use of the data
regardless of the initial source or format. Furthermore, BRIGHT will be able to schedule energy
exchanges with the available data, knowing that not every data type will be available at the same
time and for the same pilot.
A major concern about the datasets regards private and sensitive information that is usually
available alongside the energy consumption data. Some of them, especially those describing home
sensors and home energy usage, might contain personal information about the physical subject
that owns the contract, that uses or produces energy. To avoid disclosure of sensitive data, all the
datasets used in BRIGHT will be either anonymized, or be in public domain, or not contain any
private information at all.
The following table shows the main datasets defined in the deliverable D1.2.

Table 4 Identified datasets of BRIGHT system

Dataset Name Description Country

Charging stations Total power used by the system, power, current, voltage,
number of currently ongoing charging sessions, session
data.

Belgium

Smart meter data Electricity and heat demand for separate households. Belgium

District heating data Temperature, flow and energy for heat sources and heat
sinks.
Temperature in different buffer tanks.
Temperature flows in individual heat exchangers.
Thermostat state and room temperature in individual
living units.
Outside temperature.

Belgium

Residential smart meter
data

Net consumption and injection measurements for houses
with a 15-minute resolution.

Belgium

Residential flexibility data Consumption from households, PV production profiles,
flexibility information from smart appliances (mainly
whitegoods).

Belgium

Building BMS & sensor
data

BMS: Measurements for the HVAC system, weather info,
context data within the building (temperatures, status of
remotely controllable blinds and windows, air quality).
IoT sensors: measurements on air quality, noise, radiator
valve status, status of windows and doors.
BIM model of the whole building.

Belgium

Building BMS & sensor
data (sensor, actuator,
and BIM data for
residential living lab)

Historical and real-time data for environmental
parameters (temperature, air quality, user presence, light
intensity, weather info, detailed energy consumptions)
and status info on building systems (HVAC, blinds,
windows, doors, curtains, lights).

Belgium

Electricity submeter data Electricity measures. Greece

Indoor conditions data
(temperature, humidity)

Visualization of indoor parameters (temperature,
humidity).

Greece

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 54(72)

Home usage patterns
(door contacts, human
presence)

Real time monitoring as Boolean values for home usage
patterns.

Greece

Home automation and
monitoring of energy
consumption on appliance
level (smart plug, smart
relay)

Data analysis for describing electricity measures and
provide remote control.

Greece

Residential space heating
and DHW preparation
data for gas boilers

Current boiler modulation level (as percentage of max
boiler output, with most common value being 24 kW).
Current boiler water temperature.
Current domestic hot water temperature flame.
Current boiler flame state - Shows whether the boiler is
ignited.
Current boiler heat state - Shows whether the boiler
circulator is active.
Current boiler water state - Shows whether the boiler
DHW is active.
Outdoor temperature - Input taken from the DomX GW
temperature sensor (default) or by the boiler
temperature probe if it exists.
Current room temperature - Reported by the thermostat
or the DomX indoor climate sensor.
Current room humidity - Reported by the DomX indoor
climate sensor.
Desired boiler water temperature setting - Set by the
thermostat or the DomX GW.
Desired room temperature setting - Set by the
thermostat or the DomX GW.
Desired DHW temperature setting - Set by the
thermostat or the DomX GW.
Desired boiler heat setting - Set by the thermostat or the
DomX GW (Enabled/Disabled).
Desired boiler water setting - Set by the thermostat or
the DomX GW (Enabled/Disabled).
Weather compensation trade-off that adapts the
aggressiveness of the heating control algorithm (Controls
the MAX boiler water temperature to be set).
Control the boiler temperature controller source (0:
default, 1: weather compensation with user assigned, 2:
fixed boiler temperature, 4: weather compensation with
cloud controlled).
Boiler temperature as calculated by the heating control
algorithm.

Greece

Charging Station Data Historical and real-time data related to charging stations
involved.

Italy

Electric Vehicle Data Historical and real-time data related to electric vehicles
involved.

Italy

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 55(72)

ASM dataset (apartment
building level data)

Energy data regarding the IoT smart meters of a
customer group of an apartment building.

Italy

ASM dataset (ASM
headquarters data)

Data from energy units, like photovoltaic plant. Italy

ASM dataset
(users/prosumers)

Description data from customers, like energy, voltages,
currents.

Italy

ELaad EV charging data Recorded connection times, charging times, power
consumption and location info.

Netherla
nds

ElaadNL Open Datasets for
Electric Mobility Research

Overview of 10k random charging events including 15
minutes meter values per transaction.

Netherla
nds

BAG – Basisregistratie
Addressen en Gebouwen
(Key register of addresses
and buildings)

Year of construction, surface area, purpose, and
geographical coordinates of a building.

Netherla
nds

NEDU Energy Usage
Profiles

Country-averaged electricity and gas usage profiles
normalized over a year grouped into consumer types.

Netherla
nds

Service Sector and Urban-
Scale Energy Demand

Service Sector and Urban-Scale Energy Demand. Netherla
nds

EUROSTAT indicators
(Macroeconomic
indicators)

Used in descriptive analyses. EU

Questionnaire responses
from pilots

Used in descriptive analyses. EU

Partner’s answers to Data
Protection Questionnaire
(Data protection
questionnaire answers)

Data gathered were used to prepare D10.1 and D10.2 as
well as to map the flow of personal data processing
within the project.

EU

3.3 Architecture Overview

3.3.1 Architectural diagram
Errore. L'origine riferimento non è stata trovata. shows the BRIGHT's high-level architecture and
ow all its components are organized and interact with each other. To better understand this
structure, four different layers or groups can be identified:

 Service or application layer: this group contains the core services of the BRIGHT system. In
this layer, all the tools and applications that enable the flexibility services operate. In the
architectural diagram, the tools are further organized according to the WP they belong to.

 Data layer: data inside the system can be organized and shared among different tools. In
order to achieve this, a set of data storage systems are available within the system for the
tools to use. Every one of those containers need a proper connection to store and retrieve
information.

 External sources layer: external sources are all the devices, gateways, metering
infrastructure or storage systems that are not available inside the BRIGHT system but are
required by it to work properly. Examples of external sources are IoT devices, smart
meters, weather forecast data, EV stations, etc.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 56(72)

 Interoperability layer: tools and data storages need to have a common way to
communicate. Since available tools and data depends on pilot and due to the necessity of
creating a scalable environment, BRIGHT offers a single abstract communication system by
implementing an interoperable layer. This layer’s main components are the message
queue system, which allows asynchronous communication, and the external source
connector, that converts to standardized data that flows in and out the system.

3.3.1.1 Architectural components
Service/Application Layer
Previous chapters showed that the BRIGHT system must face issues concerning the availability of
components or the necessity of using different implementations for some of the modules with
respect to the pilot needs. Furthermore, complex applications like BRIGHT need to be scalable and
distributed, to better deal with system overloads.
To achieve that, the approach used to implement the service/application layer is the microservices
architecture. In this way, every tool or component inside of the system will exists autonomously
from the others and will focus on one specific task. If needed, each of them can be replicated to
better handle requests and offer all the other scalability advantages. Furthermore, separated
components and responsibilities allow each single tool to be implemented independently from the
others, with specific technologies that are tailored to the need of the provided service.
Communication between tools is managed by the message queue system inside of the
interoperability layer.

Data Layer
External sources such as IoT devices inject data into the BRIGHT architecture by using the message
queue system. This information is received by the tools and used or further elaborated to achieve
all the tool’s specific goals. Both input and enriched data can be stored inside of the applications’
storage system or in a common shared data storage. The tools are not compelled to use the data
storage inside this layer, but it’s a practical way to share data among them.

Figure 14 Conceptual BRIGHT's Architecture

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 57(72)

For each different type of storage, a connector will be available in order to access, save and
retrieve information.

External Sources Layer
Energy usage measurements, IoT devices’ data, and weather forecast are some of the information
that flows inside the system. All of them are logically contained in a specific external sources layer.
The entities inside might be not only data provider, but also consumers. For example, IoT devices
need feedback to automatically adjust temperature according to all the flexibility services enabled
by BRIGHT.
Due to each pilot needs and, in general, to different available sources that are specific for every
environment, the entities inside of this layer can differ greatly. To standardize communication
from and to the system, every single external source component that needs to connect to BRIGH
must implement a proper interface. In the architectural schema, this interface is called “data
connector”.
A semantic adapter module will support this connector in homogenizing information according to
a shared energy-related ontology such as SAREF.

Interoperability Layer
Communication between tools and all the components of the system is a very important aspect of
BRIGHT. As explored in previous chapters, availability of data or services depends on the
environment or the pilot preferences. Furthermore, data sources and new tools might be added or
removed at any time according to specific necessities. For these reasons, communication in the
system cannot be achieved by direct transmission between components.
The solution adopted is to use a messaging queue system as the only way for information
exchange from, to and within BRIGHT. Every component can register on the bus as a data
provider, such as for the data connector of external sources, and/or as a data consumer, such as
the tools and applications available in the corresponding layer. This means that messages that
travel inside of the queue will not only contain energy-related data but also information or service
requests that are shared between the tools. Moreover, messages are handled asynchronously by
the system, so communication is not meant to be in real time.
The messaging queue system implementation that has been selected for BRIGHT is Apache Kafka.

3.3.2 Dynamic view
There are several interactions and interrelation between tools that are going to be developed in
the BRIGHT project. The dynamic view of the system focuses on describing the workflow and data

exchange between the different components and actors of the BRIGHT system.
There is a particular connection between the tools developed in WP4 and those developed in
WP5. The sequence diagram of Figure 15 shows the information flow among tools developed in
T4.4, T4.5 and T5.1. The Clustering Block represents the clustering tool developed as a part of Task
4.4. The module uses input data from the pilots, processes this data to identify user clusters. This
module then passes on these clusters to other tools, internal or external. The Modeling Block
represents the digital twin model being developed as a part of Task 4.5. The module uses input
data from the pilots and uses cluster information from the Clustering tool to model thermal
behavior of different households. The trained model (neural network) represents the digital twin
and is provided to the other tools. It also allows to generate cluster specific load forecasts (T4.2).
The RL Control Block represents the reinforcement learning based controller that will be
developed as a part of task 5.1. This module uses cluster information from the Clustering Block, to
access cluster specific building training data and a model of that building to learn the optimum

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 58(72)

control strategy for the building. This trained controller can then be used with pilot assets to test
the performance in real-world deployments or by other partners for what-if analyses.

Figure 15 Sequence diagram for tools developed in WP4 and WP5

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 59(72)

Another strong relation is presented between the tools developed as part of WP6. The sequence
diagram of Figure 16 shows the information flow between WP6 components and the forecasting
tool developed as part of WP4. The Edge Metering Infrastructure and Interoperable Gateway
gathers the monitored data from the Energy Community Physical Assets. This data is stored in the
Energy Data Storage and in the Distributed Ledger and can be used to forecast consumption,
production, and flexibility. Based on the information of the forecast, users can decide to
participate in the P2P Flexibility Market or can register to the Community Self-Governance to
Deliver Flexibility Services, which allows the creation and decentralized management of coalitions
in a community to deliver flexibility services on demand to the main grid. Once the flexibility

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 60(72)

delivery actions are validated, the energy transactions and financial settlement are managed by
the Decentralized Management and Settlement of Flexibility Driven DR.

Figure 16 Information flow between tools developed in WP6 and the forecasting tool developed as part of WP4

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 61(72)

3.3.3 Technologies

3.3.3.1 Microservices
Nowadays, modern applications are often distributed over the cloud and accessed from the
Internet. The vast number of people that can use them forces applications to put particular
attention towards availability of the services. To achieve that, software must be highly scalable, to
handle system use, and also be distributed.
The common monolithic approach used to structure an application’s architecture, can’t really
adapt, and address these requirements. The term monolithic architecture refers to the practice of
designing an entire system or application within a single entity or artifact, hence the term
monolithic. This approach usually simplifies some aspects of the development and delivery of the
software, for instance a single code base makes it easier to reuse pieces of logic and the shared
memory makes the application generally faster. According to the modern application scenario
discussed earlier, a monolithic architecture has a lot of weaknesses. For example, horizontal
scalability requires replication of the whole application and not only of the most stressed
components; the same applies to application distribution.
A better approach to the system architecture design is offered by the microservices architecture.
This methodology aims to address monolithic architecture’s issues by adopting different and
specific techniques, some of which are inherited from the more general Service Oriented
Architecture (SOA). Microservices architecture suggests structuring the application as a collection
of smaller services, each one being responsible for a specific logical and conceptual part of the
system. The criteria might be around what’s the purpose of the service or which domain’s concept
it is going to take care about. Since they don’t share the same memory, the communication
between them can be decided according to the system necessity or requirements. Commonly, the
interaction between different services is done over an open network or protocol, such as Internet
and HTTP. To avoid misconceptions, microservices are not a part of a monolithic architecture but
rather a way of structuring an application. It is entirely possible, of course, that the
implementation of a single microservice reflects the standard layered one.
Even if there isn't a widely accepted definition for the microservice architecture, and considering
the strong independence required for each service, most sources agree that it has the following
characteristics:

 Scalability: microservices are isolated one from another. This level of independence grants
them the ability of being replaced and deployed separately from the others. Hence, each
service scales singularly from the rest of the application, both horizontally and vertically,
providing a strong benefit to resource and cost optimization when more computational
power is required.

 Highly maintainable and testable: each service is specific for a domain or set of
functionalities. This separation should make it small enough to be easily maintainable and
testable, in contrast with monolithic applications that require test and development on the
whole software for every improvement made.

 Loosely coupled: components are not aware of the presence of other ones nor the way the
other entities are implemented. Each service can be considered as a single and separated
module, that can be replaced or that can even not exist for a specific setting of the system.

 Integration with legacy systems: the communications between services is possible outside
of the system and the memory is not shared between them. These advantages help with
the integration of different or legacy systems that might be already available in some
environments. Due to these level of abstractions, legacy applications can later be replaced
with new ones, if necessary.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 62(72)

 Technology agnosticism: assuming that the communication between services is defined
and agreed among them, each single service can be implemented with any technology or
technique available. For instance, the owners of different services are not bounded to use
the same programming language as long as they offer their services in the system in a
shared way.

 Organized around business capabilities: each business capability, such as the management
of energy related data or placement of a flexible asset order, is managed by a single or a
set of services that are often maintained by the same team, hence simplifying interactions
and development of the application.

3.3.3.2 Apache Kafka
Kafka is an event streaming platform, based on a distributed commit log. Born as a messaging
queue and then evolved to a streaming platform, it is now maintained and updated by the Apache
Software foundation.
In its core, it uses an immutable commit log to track every operation that is made within the
system. Those operations, called events, are persisted in one or more storages that can be
distributed across multiple nodes. Kafka is particularly efficient in managing great numbers of
events and it retains large amounts of data with very little overhead. The complete log of all the
events acts as source of the history of the system and enables the replay of each single event if
needed. This is particularly useful to restore the system after a breakdown or to let newly added
services be up to date to the current state.
Each service that wants to interact with the platform can be a producer (clients that publish the
data), consumer (clients that use the data) or both. In Kafka, every node of a cluster is called
Broker and can manage one or more different topics. Events that are submitted in the system are
stored into topics, that act as a directory for messages. Topics can be further divided into
partitions, that can be managed by different brokers. If necessary, the platform lets producers or
consumers to interact with a specific topic-partition couple.
Kafka is particularly suitable for big data streaming. Every piece of information that flows inside of
the system can be manipulated by the bundled libraries: they offer a set of extendable APIs that
include common operations such as join, aggregation or windowing of data.
The platform is highly scalable, both vertically, by adding more resources such as CPU or memory,
and horizontally, by creating another instance of Kafka as another cluster. Scaling can also be
achieved by increasing the number of consumers and/or the number of brokers. The first
approach addresses low performances when consumers are not fast enough in handling the too
large quantity of messages received in the system. Instead, the second one is more advantageous
when the brokers are not able to keep up with the messages' volume, but the consumers are fast
enough.
Kafka adopts a publish + subscribe approach and a pull mechanism for the delivery of messages:
each consumer pulls the data from a topic instead of having it pushed by the broker. This
characteristic is particularly suited for scenarios in which the data received is remarkable, but
consumers don't operate all at the same speed. In this case, each consumer can decide how to
operate and pull the data in real-time or batch mode, according to its own necessity and
capabilities.

3.3.3.3 REST
REST stands for REpresentational State Transfer. It is an architectural style and guidelines widely
used for services on the Internet due to their usefulness and adaptability for distributed systems.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 63(72)

In contrast with SOAP, REST is not a protocol, so no official standard exists. Despite this, many
implementations of RESTful architectures make use of well-known standards to work such as
HTTP, URI, and JSON. The key concept of REST services is the resource. A resource is a unique
entity identified by a global URI, accessible or available in a network, in general the Internet. On a
resource, different operations might be allowed; for instance, for the HTTP protocol the most
common ones are: get, post, put and delete. In order, they allow a resource to be read, inserted,
updated and deleted.
A request to a RESTful service always returns a response. The returned data is considered the
representation of a resource or entity, that might differ from the original and stored one. This
representation has a specific format; the most used ones are XML or JSON.
RESTful does not have strict specifications, but six guidelines or constraints are defined for a
mature APIs implementation. They are:

 Client-server: client and server must have separated concerns and responsibilities. This
allows portability of the client and scalability of the server components.

 Stateless: evert request must contain all the information necessary for the client, in
isolation with other previous or following requests.

 Cacheable: the data contained in a response to a request, must be labelled as cacheable
(or non-cacheable), either implicitly or explicitly.

 Uniform interface: with a uniform interface, the architecture is simplified and decoupled,
allowing the system to evolve seamlessly for the client. To obtain a uniform interface, the
following constraints must be valid:

o Resource identification in requests: for example, by identifying resources using
URIs.

o Resource manipulation through representations: having a representation of a
resource is sufficient to modify or delete its state

o Self-descriptive messages: each message should include all the information needed
to process it by a client

o Hypermedia as the engine of application state (HATEOAS): with the access to a
starting URI, the client should be able to navigate the other resources with the use
of server provided hyperlinks. This allows changes in the server without the need
for the client to have such information.

 Layered system: a client should not know where and how the data is retrieved. A layered
system allows the integration of intermediate servers that are not aware of the network
state themselves. Intermediate servers can be act for example as security filter or data
aggregators.

 Code on demand (optional): client's functionalities can be extended with the use of applets
and scripts that can be retrieved from a service. In this way, the client might have a
simplified structure and add other features over time.

In the BRIGHT project most involved resources are actually being accessed through the REST API,
since it is the most common architecture employed by the majority of
vendors/developers/systems. Most of the pilot sites expose historical data through the REST API.
The API has predictable, resource-oriented URLs and uses HTTP response codes to indicate API
errors. The API uses HTTP authentication and HTTP verbs which are understood by standard off-
the-shelf HTTP clients. All API requests are served by a response in JSON format which can be
easily interpreted and converted to other formats inside the microservices and analytics
components.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 64(72)

3.3.4 Cyber security and data privacy
The energy domain is particularly rich of information: IoT tools data, weather forecast, and energy
usage data are just some of them. To offer flexibility services and energy usage optimization,
BRIGHT needs to have access and be able to compute the available data. The great variety of it,
that is injected in the system, includes not only the ones defined before, but also personal data of
the citizens or users that access BRIGHT. While the energy related data doesn’t contain sensible
information and thus can be managed in a simpler way, private data require particular care,
specifically to the privacy and the security of the data. Those and the other important aspects are
deeply analysed in the deliverable D2.2 called "Privacy, Ethics and Legal Requirements".
As stated in the deliverable and with focus on the architecture, all the developed tools that act in
the system need to be compliant with the described specifications, especially on two important
aspects:

 Cyber Securty: the dimension that concern the protection of data against theft, damage or
unwanted alteration. In the BRIGHT’s context, this regards the energy grid as well.

 Data Privacy: the aspect of ensuring that data is properly handled. In practice, this revolve
around how data is collected and stored from a legal perspective, if it's shared with third
parties and regulatory systems such as the GDPR.

The following table defines more in depth all the requirements and what kind of rules and policies
are implemented in each tool.

Table 5 List of guidelines for cybersecurity aspects

Requirement Description Rules and policies

Implementation
of security
measures (in
general)

The IT infrastructure shall
implement adequate and
appropriate security measures
able to protect the data to be
ingested in the infrastructure as
well as its functionalities. In this
respect, such measures shall
include either physical or
technological measures, and in
any case shall be designed
applying a risk-based approach,
which shall consider all the
components and their
interactions.

 It is recommended that ICT
processes in the BRIGHT project
consider for each component the
definition of security test
procedures, acceptance thresholds
and reports in order to evaluate
the addressing of all the defined
threats, as well as to identify new
potential and unforeseen threats.

 It is recommended to release the
BRIGHT components with relative
test reports, in order to provide
evidence of security level.

Notification
system

This requirement entails that the
infrastructure is able to (i) detect
and to send a prompt warning
notification/message in case of
actual attacks or even potential
to the most appropriate
authority; (ii) send a notification

 It is recommended to promptly
notify the parties (i.e. data subject
and data controller) about the
status of any event occurred in the
system and that can directly or
indirectly impact on them.

 Notification system has to adopt

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 65(72)

message complete with all the
necessary information to detect
the threats and determine the
countermeasures; and (iii) the
same notification system shall
also be designed and construed
applying adequate and
proportionate security
measures.

appropriate measures in order to
guarantee the authenticity and
integrity of alerts themselves.

Confidentiality The requirement of
confidentiality aims at
protecting both personal and
nonpersonal information from
un-authorized access and/or
use.

 It is recommended to define,
implement and test appropriate
management of authorisations to
access and/or use data.

 It is recommended to continuously
update the level of reputation of
the entities involved to gather,
collect, access and process data.
Based on the updated information,
authorisation to access and/or use
data have to be accordingly
revised.

Availability Means that the information
circulating within the smart grid
are timely and reliably accessible
in case of need.

 It is recommended to identify the
reasonable level of security with
respect to the time constraints.
Lightweight hashing algorithms
and performing encryption
mechanisms should be considered
at the design phase of the
communication protocols and
mechanisms of the architecture.

Integrity Means that the information
stored or in any case circulating
within the IT infrastructure
cannot be modified (nor be
tampered or lost), and therefore
is reliable and trustable. A good
practice might be the
implementation of a blockchain
solution.

 It is recommended to adopt
techniques of data integrity
management such as hashing,
EDCs, etc.

Accountability Entails that the data and the
operations made on certain data
can be tracked and traced back
to specific and pre-authorised
individuals.

 It is recommended to ensure
traceability of permissions,
authorisations, reputations,
events, and any vital information
needed for providing evidence of
system accountability.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 66(72)

4 Conclusions
 This deliverable details the design of the DR technologies to be used in BRIGHT in terms of
technical and functional specifications of the project’s components with an in-depth definition of
the new tools and functionalities that will be developed in WP4, WP5, and WP6. Guidelines based
on the ISO/IEC/IEEE 29148:2018 standard have been applied for the collection of technical
information. The templates circulated among the BRIGHT partners have proved to be a powerful
instrument for identifying a first version of functional and non-functional requirements for the
development of BRIGHT’s tools. An agile approach and methodology were followed in the
collection of the software requirements illustrated in this deliverable, since itrepresents the only
instrument for said purpose within the project. The collected requirements will be refined
periodically during the course of the project, benefiting from the increased level of knowledge
achieved in later stages and exploiting additional information not available at the current stage.
After defining the set of tools specifications, the high-level architecture model has also been
included to show how all ICT components are organized and interact with each other and what
kind of technologies will be used for the implementation of the BRIGHT system.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 67(72)

References

[1] «Requirements Envisioning: An Agile Core Practice,» [Online]. Available:
http://agilemodeling.com/essays/initialRequirementsModeling.htm.

[2] «Trello,» [Online]. Available: https://trello.com/.

[3] PeopleCert, «DevOps Fundamentals - Study Guide».

[4] «The Reactive Manifesto,» [Online]. Available: https://www.reactivemanifesto.org/.

[5] «Configuring Kafka for reactive systems,» [Online]. Available:
https://developer.ibm.com/components/kafka/articles/configuring-kafka-for-reactive-
applications.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 68(72)

Annex 1 – Software Requirements Specification Templates

Assets SRS Template
Scope
Please fill in the following table describing the scope of the tools that will be developed in your WP
by:

 identifying the software product(s) to be produced by name (e.g., Host DBMS, Report
Generator, etc.);

 explaining what the software product(s) will do;

 describing the application of the software being specified, including relevant benefits,
objectives and goals

Scope

Name Example Software Requirements Specification (SRS)

Description This document specifies requirements for a simple application
for requirements management of software and system
products.
The application allows users to:

 Capture requirements specifications
 Manage requirements using custom attributes
 Set up requirements traceability
 Browse the requirements traceability matrix
 Comment and review requirements
 Filter and search requirements
 Import requirements from MS Word or Excel
 Export requirements to DOCX, XLSX, HTML, or CSV
 Analyze requirements coverage and impact of changes
 Print requirements specifications

Goals The application stores documents as human readable files with
open file format.
The application runs offline without connection to any server.

Product overview
Give a brief description of the product characteristics of the tools that will be developed in your
WP by taking in consideration:

 Product perspective: Define the system's relationship to other related products. If the
product is an element of a larger system, relate the requirements of that larger system to
the functionality of the product covered by the SRS.

 Product functions: Provide a summary of the major functions that the software will
perform.

 User characteristics: Describe those general characteristics of the intended groups of users
of the product including characteristics that may influence usability, such as educational
level, experience, disabilities and technical expertise.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 69(72)

Product overview

Product perspective The application runs in the latest version of Chrome or Firefox
browser on Windows, Linux, and Mac.
The application GUI provides menus, toolbars, buttons, panes,
containers, grids allowing for easy control by a keyboard and a
mouse.
The application allows import a structured MS Word document via
HTML data format.
The application allows populating a MS Word document with project
data via HTML data format.
The application allows import / export a list of requirements from /
to MS Excel sheet via CSV data format.
The application stores project data in JSON format to enable easy
integration with 3rd party applications.

Product functions The application shall allow users to create a new empty
document.

 If the current document contains unsaved changes then the
application shall allow users to save the changes before
closing the document.

 The application shall allow users to open a document from a
chosen file.

 [….]

 The application shall allow users to export requirements to
CSV.

User characteristics The software is intended for general users with no previous
experience and no specific technical expertise required.

TOOLS SRS Template

[TOOL_NAME] Requirements
Functions
Define the fundamental actions that have to take place for each tool that will be developed in your
WP.
Fill in the following table with a list of requirements for each tool, taking in consideration these
guidelines for their definition:

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 70(72)

Functional Requirements

ID Requirement Related Use Case

SAMPLE-SRS-1
The application shall allow
users to create a new empty
document.

UC-1 (Create Document)

SAMPLE-SRS-2

If the current document
contains unsaved changes then
the application shall allow
users to save the changes
before closing the document.

UC-1 (Create Document)

SAMPLE-SRS-3
The application shall allow
users to open a document from
a chosen file

UC-2 (Open File)

SAMPLE-SRS-4
The application shall allow
users to save the opened
document into a file.

UC-3 (Save File)

SAMPLE-SRS-5

The application shall allow
users to create a document
template file from the opened
document.

UC-4 (Document Template)

SAMPLE-SRS-6

Document templates shall
store structure of document
sections and definition and
values of requirement
attributes.

UC-4 (Document Template)

SAMPLE-SRS-7

The application shall allow
users to create a new
document from a chosen
document template file
preserving the structure of
document sections and the
definition and values of
requirement attributes.

UC-4 (Document Template)

… … …

Performance requirements
Specify both the static and the dynamic numerical requirements placed on the software or on
human interaction with the software as a whole.
For example: 95 % of the transactions shall be processed in less than 1 s.

Performance Requirements

ID Requirement

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 71(72)

SAMPLE-SRS-8 The application should display the opened
document within 10s after it is started.

SAMPLE-SRS-9 The application shall allow users to open
documents up to 10000 objects and 100 file
attachments with total size up to 100MB.

… …

Interface requirements
Specify requirements for interfaces among system elements and with external entities. Interfaces
among system elements should include interfaces with the human element. Interfaces with
external
entities should include other systems.
Define any interdependencies or constraints associated with the interfaces (e.g., communication
protocols, special devices, standards, fixed formats). Each interface may represent a bidirectional
flow of information. A graphic representation of the interfaces can be used when appropriate for
the sake of clarity.

e.g. The application stores project data in JSON format to enable easy integration with 3rd party
applications.

Design constraints
Specify constraints on the system design imposed by external standards, regulatory requirements
or project limitations.

e.g. The amount of System memory occupied by the application must be no more than 20 MB; The
application’s need of hard drive space must not exceed 10 GB; […]

Software system attributes
Fill in the table below, specifing the required attributes of the software product for each tool that
will be developed in your WP. The following is a list of examples of software attributes that you
can use:

a) Reliability - specify the factors required to establish the required reliability of the software
system at the time of delivery.

b) Availability - specify the factors required to guarantee a defined availability level for the
entire system such as checkpoint, recovery and restart.

c) Security - specify the requirements to protect the software from accidental or malicious
access, use modification, destruction or disclosure. Specific requirements in this area could
include the need to:
1) utilize certain cryptographic techniques;
2) keep specific log or history data sets;
3) assign certain functions to different modules
4) restrict communications between some areas of the programme
5) check data integrity for critical variables
6) assure data privacy

d) Maintainability - specify attributes of software that relate to the ease of maintenance of
the software itself. These may include requirements for certain modularity, interfaces or
complexity limitation. Requirements should not be placed here just because they are
thought to be good design practices.

BRIGHT D2.3 – DR Technologies and Tools

BRIGHT 72(72)

e) Portability - specify attributes of software that relate to the ease of porting the software to
other host machines and/or operating systems.

Software System Attributes

ID Requirement Software Attribute

SAMPLE-SRS-10 The application shall not send
any project data to the
Internet.

Security

SAMPLE-SRS-11 The application shall sanitize
any data input or imported by
users.

Security

Technology stack

Provide a brief description of the technology stack you will use to implement the tool
functionalities.

e.g. the application is developed in Node.JS version X.Y and uses MongoDB X.Y as database. The
API requests are handled using the Express web application framework. The application frontend is
developed using Angular version X.Y.

Figure X TOOL_NAME Technology Stack

Verification
Provide the verification approaches and methods planned to qualify the software tools.

e.g. Verification of the attributes will be performed through unit tests and integration tests.

